MSP430x11x2, MSP430x12x2 MIXED SIGNAL MICROCONTROLLER

SLAS361D - JANUARY 2002 - REVISED AUGUST 2004

- Low Supply Voltage Range 1.8 V to 3.6 V
- **Ultralow-Power Consumption:**
 - Active Mode: 200 μA at 1 MHz, 2.2 V
 - Standby Mode: 0.7 μA
 - Off Mode (RAM Retention): 0.1 μA
- **Five Power Saving Modes**
- Wake-Up From Standby Mode in less than 6 µs
- 16-Bit RISC Architecture, 125 ns **Instruction Cycle Time**
- **Basic Clock Module Configurations:**
 - Various Internal Resistors
 - Single External Resistor
 - 32-kHz Crystal
 - High Frequency Crystal
 - Resonator
 - External Clock Source
- 16-Bit Timer A With Three **Capture/Compare Registers**
- 10-Bit, 200-ksps A/D Converter With Internal Reference, Sample-and-Hold, Autoscan, and Data Transfer Controller
- Serial Communication Interface (USART0) With Software-Selectable Asynchronous **UART or Synchronous SPI** (MSP430x12x2 Only)

- Serial Onboard Programming, No External Programming Voltage Needed **Programmable Code Protection by Security Fuse**
- **Supply Voltage Brownout Protection**
- MSP430x11x2 Family Members Include: MSP430F1122: 4KB + 256B Flash Memory **256B RAM**

MSP430F1132: 8KB + 256B Flash Memory **256B RAM**

Available in 20-Pin Plastic SOWB, 20-Pin Plastic TSSOP and 32-Pin QFN Packages

MSP430x12x2 Family Members Include: MSP430F1222: 4KB + 256B Flash Memory

256B RAM

MSP430F1232: 8KB + 256B Flash Memory **256B RAM**

Available in 28-Pin Plastic SOWB, 28-Pin Plastic TSSOP, and 32-Pin QFN Packages

For Complete Module Descriptions, See the MSP430x1xx Family User's Guide, **Literature Number SLAU049**

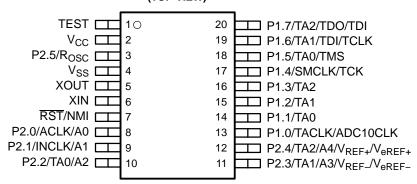
description

The Texas Instruments MSP430 family of ultralow-power microcontrollers consist of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low power modes is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that attribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 6μs.

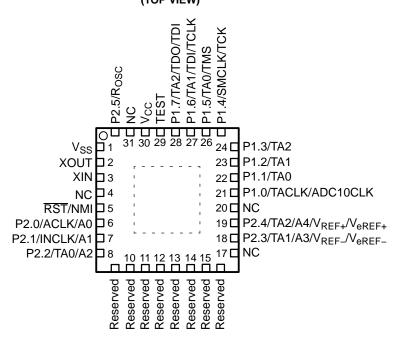
The MSP430x11x2 and MSP430x12x2 series are ultralow-power mixed signal microcontrollers with a built-in 16-bit timer, 10-bit A/D converter with integrated reference and data transfer controller (DTC) and fourteen or twenty-two I/O pins. In addition, the MSP430x12x2 series microcontrollers have built-in communication capability using asynchronous (UART) and synchronous (SPI) protocols.

Digital signal processing with the 16-bit RISC performance enables effective system solutions such as glass breakage detection with signal analysis (including wave digital filter algorithm). Another area of application is in stand-alone RF sensors.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



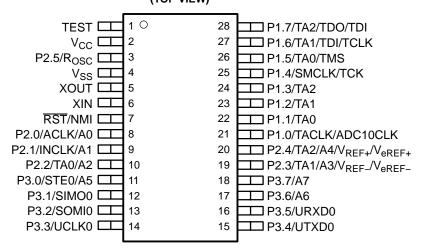
AVAILABLE OPTIONS


	PACKAGED DEVICES							
T _A	PLASTIC 20-PIN SOWB (DW)	PLASTIC 20-PIN TSSOP (PW)	PLASTIC 28-PIN SOWB (DW)	PLASTIC 28-PIN TSSOP (PW)	PLASTIC 32-PIN QFN (RHB)			
-40°C to 85°C	MSP430F1122IDW MSP430F1132IDW	MSP430F1122IPW MSP430F1132IPW	MSP430F1222IDW MSP430F1232IDW	MSP430F1222IPW MSP430F1232IPW	MSP430F1122IRHB MSP430F1132IRHB MSP430F1222IRHB MSP430F1232IRHB			

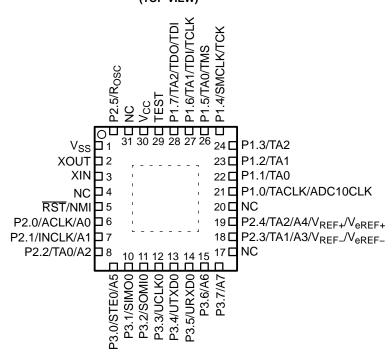
pin designation, MSP430x11x2 (see Notes 1, 2 and 3)

DW or PW PACKAGE (TOP VIEW)

RHB PACKAGE (TOP VIEW)

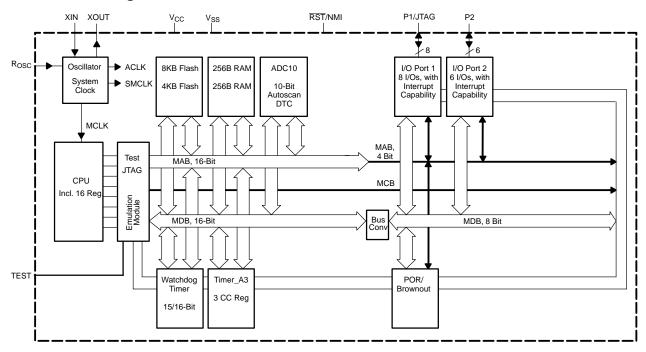

NOTES: 1. NC pins are not internally connected. Recommended connection to V_{SS} .

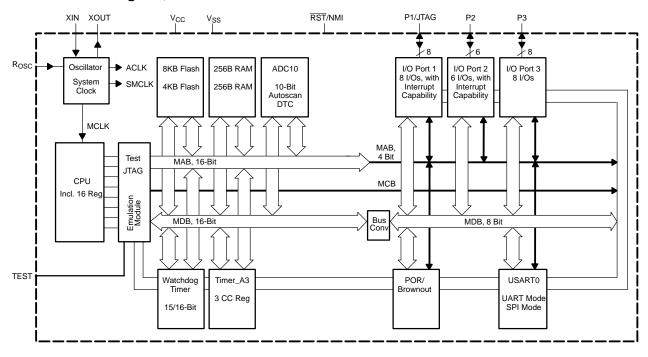
- 2. Recommended connection to V_{SS} for all pins labeled "Reserved" to avoid floating nodes, otherwise increased current consumption may occur.
- 3. Power pad connection to $V_{\mbox{SS}}$ recommended.



pin designation, MSP430x12x2 (see Notes 1 and 2)

DW or PW PACKAGE (TOP VIEW)


RHB PACKAGE (TOP VIEW)


NOTES: 1. NC pins are not internally connected. Recommended connection to VSS.

2. Power pad connection to V_{SS} recommended.

functional block diagram, MSP430x11x2

functional block diagram, MSP430x12x2

Terminal Functions, MSP430x11x2

TEF	TERMINAL				
NAME	DW & PW	RHB	1/0	DESCRIPTION	
P1.0/TACLK/ ADC10CLK	13	21	I/O	General-purpose digital I/O pin/Timer_A, clock signal TACLK input/conversion clock—10-bit ADC	
P1.1/TA0	14	22	I/O	General-purpose digital I/O pin/Timer_A, capture: CCI0A input, compare: Out0 output/BSL transmit	
P1.2/TA1	15	23	I/O	General-purpose digital I/O pin/Timer_A, capture: CCI1A input, compare: Out1 output	
P1.3/TA2	16	24	I/O	General-purpose digital I/O pin/Timer_A, capture: CCI2A input, compare: Out2 output	
P1.4/SMCLK/TCK	17	25	I/O	General-purpose digital I/O pin/SMCLK signal output/test clock, input terminal for device programming and test	
P1.5/TA0/TMS	18	26	I/O	General-purpose digital I/O pin/Timer_A, compare: Out0 output/test mode select, input terminal for device programming and test	
P1.6/TA1/TDI/TCLK	19	27	I/O	General-purpose digital I/O pin/Timer_A, compare: Out1 output/test data input terminal or test clock input	
P1.7/TA2/TDO/TDI [†]	20	28	I/O	General-purpose digital I/O pin/Timer_A, compare: Out2 output/test data output terminal or data input during programming	
P2.0/ACLK/A0	8	6	I/O	General-purpose digital I/O pin/ACLK output/analog input to 10-bit ADC input A0	
P2.1/INCLK/A1	9	7	I/O	General-purpose digital I/O pin/Timer_A, clock signal at INCLK/analog input to 10-bit ADC input A1	
P2.2/TA0/A2	10	8	I/O	General-purpose digital I/O pin/Timer_A, capture: CCI0B input, compare: Out0 output/analog input to 10-bit ADC input A2/BSL receive	
P2.3/TA1/A3/V _{REF} _/ V _{eREF} _	11	18	I/O	General-purpose digital I/O pin/Timer_A, capture: CCI1B input, compare: Out1 output/analog input to 10-bit ADC input A3/negative reference voltage terminal.	
P2.4/TA2/A4/V _{REF+} / V _{eREF+}	12	19	I/O	General-purpose digital I/O pin/Timer_A, compare: Out2 output/analog input to 10-bit ADC input A4/I/O of positive reference voltage terminal	
P2.5/R _{OSC}	3	32	I/O	General-purpose digital I/O pin/Input for external resistor that defines the DCO nominal frequency	
RST/NMI	7	5	I	Reset or nonmaskable interrupt input	
TEST	1	29	I	Selects test mode for JTAG pins on P1.x	
V _{CC}	2	30		Supply voltage	
V_{SS}	4	1		Ground reference	
XIN	6	3	ı	Input terminal of crystal oscillator	
XOUT	5	2	0	Output terminal of crystal oscillator	
NC	NA	4,17,20,31		Not connected internally. Recommended connection to V _{SS} .	
Reserved	NA	9 - 16		Reserved pins. Recommended connection to V_{SS} to avoid floating nodes, otherwise increased current consumption may occur.	
QFN Pad	NA	Package Pad		QFN package pad connection to V _{SS} recommended.	

 $^{^{\}dagger}$ TDO or TDI is selected via JTAG instruction.

Terminal Functions, MSP430x12x2

TEF	RMINAL			DECORIDATION	
NAME	DW & PW	RHB	1/0	DESCRIPTION	
P1.0/TACLK/ ADC10CLK	21	21	I/O	General-purpose digital I/O pin/Timer_A, clock signal TACLK input/conversion clock—10-bit ADC	
P1.1/TA0	22	22	I/O	General-purpose digital I/O pin/Timer_A, capture: CCI0A input, compare: Out0 output/BSL transmit	
P1.2/TA1	23	23	I/O	General-purpose digital I/O pin/Timer_A, capture: CCI1A input, compare: Out1 output	
P1.3/TA2	24	24	I/O	General-purpose digital I/O pin/Timer_A, capture: CCl2A input, compare: Out2 output	
P1.4/SMCLK/TCK	25	25	I/O	General-purpose digital I/O pin/SMCLK signal output/test clock, input terminal for device programming and test	
P1.5/TA0/TMS	26	26	I/O	General-purpose digital I/O pin/Timer_A, compare: Out0 output/test mode select, input terminal for device programming and test	
P1.6/TA1/TDI/TCLK	27	27	I/O	General-purpose digital I/O pin/Timer_A, compare: Out1 output/test data input terminal or test clock input	
P1.7/TA2/TDO/TDI [†]	28	28	I/O	General-purpose digital I/O pin/Timer_A, compare: Out2 output/test data output terminal or data input during programming	
P2.0/ACLK/A0	8	6	I/O	General-purpose digital I/O pin/ACLK output/analog input to 10-bit ADC input A0	
P2.1/INCLK/A1	9	7	I/O	General-purpose digital I/O pin/Timer_A, clock signal at INCLK/analog input to 10-bit ADC input A1	
P2.2/TA0/A2	10	8	I/O	General-purpose digital I/O pin/Timer_A, capture: CCI0B input, compare: Out0 output/analog input to 10-bit ADC input A2/BSL receive	
P2.3/TA1/A3/V _{REF} _/ V _{eREF} _	19	18	I/O	General-purpose digital I/O pin/Timer_A, capture: CCI1B input, compare: Out1 output/analog input to 10-bit ADC input A3/negative reference voltage terminal.	
P2.4/TA2/A4/V _{REF+} / V _{eREF+}	20	19	I/O	General-purpose digital I/O pin/Timer_A, compare: Out2 output/analog input to 10-bit ADC input A4/I/O of positive reference voltage terminal	
P2.5/R _{OSC}	3	32	I/O	General-purpose digital I/O pin/Input for external resistor that defines the DCO nominal frequency	
P3.0/STE0/A5	11	9	I/O	General-purpose digital I/O pin/slave transmit enable—USART0/SPI mode/analog input to 10-bit ADC input A5	
P3.1/SIMO0	12	10	I/O	General-purpose digital I/O pin/slave in/master out of USART0/SPI mode	
P3.2/SOMI0	13	11	I/O	General-purpose digital I/O pin/slave out/master in of USART0/SPI mode	
P3.3/UCLK0	14	12	I/O	General-purpose digital I/O pin/external clock input—USART0/UART or SPI mode, clock output—USART0/SPI mode clock input	
P3.4/UTXD0	15	13	I/O	General-purpose digital I/O pin/transmit data out—USART0/UART mode	
P3.5/URXD0	16	14	I/O	General-purpose digital I/O pin/receive data in—USART0/UART mode	
P3.6/A6	17	15	I/O	General-purpose digital I/O pin/analog input to 10-bit ADC input A6	
P3.7/A7	18	16	I/O	General-purpose digital I/O pin/analog input to 10-bit ADC input A7	
RST/NMI	7	5	I	Reset or nonmaskable interrupt input	
TEST	1	29	I	Selects test mode for JTAG pins on P1.x	
V _{CC}	2	30		Supply voltage	
V _{SS}	4	1		Ground reference	
XIN	6	3	ı	Input terminal of crystal oscillator	
XOUT	5	2	0	Output terminal of crystal oscillator	
NC	NA	4,17,20,31		Not connected internally. Recommended connection to V _{SS} .	
QFN Pad	NA			QFN package pad connection to V _{SS} recommended.	

[†] TDO or TDI is selected via JTAG instruction.

short-form description

CPU

The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand.

The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock.

Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator respectively. The remaining registers are general-purpose registers.

Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions.

instruction set

The instruction set consists of 51 instructions with three formats and seven address modes. Each instruction can operate on word and byte data. Table 1 shows examples of the three types of instruction formats; the address modes are listed in Table 2.

Table 1. Instruction Word Formats

Dual operands, source-destination	e.g. ADD R4,R5	R4 + R5> R5
Single operands, destination only	e.g. CALL R8	PC>(TOS), R8> PC
Relative jump, un/conditional	e.g. JNE	Jump-on-equal bit = 0

Table 2. Address Mode Descriptions

ADDRESS MODE	s	D	SYNTAX	EXAMPLE	OPERATION
Register	•	•	MOV Rs,Rd	MOV R10,R11	R10> R11
Indexed	•	•	MOV X(Rn),Y(Rm)	MOV 2(R5),6(R6)	M(2+R5)> M(6+R6)
Symbolic (PC relative)	•	•	MOV EDE,TONI		M(EDE)> M(TONI)
Absolute	•	•	MOV &MEM,&TCDAT		M(MEM)> M(TCDAT)
Indirect	•		MOV @Rn,Y(Rm)	MOV @R10,Tab(R6)	M(R10)> M(Tab+R6)
Indirect autoincrement	•		MOV @Rn+,Rm	MOV @R10+,R11	M(R10)> R11 R10 + 2> R10
Immediate	•		MOV #X,TONI	MOV #45,TONI	#45> M(TONI)

NOTE: S = source D = destination

MSP430x11x2, MSP430x12x2 MIXED SIGNAL MICROCONTROLLER

SLAS361D - JANUARY 2002 - REVISED AUGUST 2004

operating modes

The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request and restore back to the low-power mode on return from the interrupt program.

The following six operating modes can be configured by software:

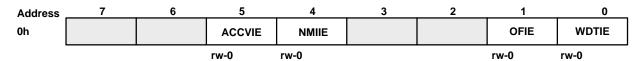
- Active mode AM;
 - All clocks are active
- Low-power mode 0 (LPM0);
 - CPU is disabled ACLK and SMCLK remain active. MCLK is disabled
- Low-power mode 1 (LPM1);
 - CPU is disabled
 ACLK and SMCLK remain active. MCLK is disabled
 DCO's dc-generator is disabled if DCO not used in active mode
- Low-power mode 2 (LPM2);
 - CPU is disabled
 MCLK and SMCLK are disabled
 DCO's dc-generator remains enabled
 ACLK remains active
- Low-power mode 3 (LPM3);
 - CPU is disabled MCLK and SMCLK are disabled DCO's dc-generator is disabled ACLK remains active
- Low-power mode 4 (LPM4);
 - CPU is disabled
 ACLK is disabled
 MCLK and SMCLK are disabled
 DCO's dc-generator is disabled
 Crystal oscillator is stopped

interrupt vector addresses

The interrupt vectors and the power-up starting address are located in the address range of 0FFFFh-0FFE0h. The vector contains the 16-bit address of the appropriate interrupt handler instruction sequence.

INTERRUPT SOURCE	INTERRUPT FLAG	SYSTEM INTERRUPT	WORD ADDRESS	PRIORITY
Power-up External reset Watchdog Flash memory	WDTIFG (see Note1) KEYV (see Note 1)	Reset	0FFFEh	15, highest
NMI Oscillator fault Flash memory access violation	NMIIFG (see Notes 1 and 4) OFIFG (see Notes 1 and 4) ACCVIFG (see Notes 1 and 4)	(Non)-maskable (Non)-maskable (Non)-maskable	0FFFCh	14
			0FFFAh	13
			0FFF8h	12
			0FFF6h	11
Watchdog timer	WDTIFG	Maskable	0FFF4h	10
Timer_A3	TACCR0 CCIFG (see Note 2)	Maskable	0FFF2h	9
TACCR1 and TACCR2 Timer_A3 CCIFGs, TAIFG (see Notes 1 and 2)		Maskable	0FFF0h	8
USART0 receive (see Note 5)	URXIFG0	Maskable	0FFEEh	7
USART0 transmit (see Note 5)	UTXIFG0	Maskable	0FFECh	6
ADC10	ADC10IFG	Maskable	0FFEAh	5
			0FFE8h	4
I/O Port P2 (eight flags – see Note 3)	P2IFG.0 to P2IFG.7 (see Notes 1 and 2)	Maskable	0FFE6h	3
I/O Port P1 (eight flags)	P1IFG.0 to P1IFG.7 (see Notes 1 and 2)	Maskable	0FFE4h	2
			0FFE2h	1
			0FFE0h	0, lowest

- NOTES: 1. Multiple source flags
 - 2. Interrupt flags are located in the module
 - 3. There are eight Port P2 interrupt flags, but only six Port P2 I/O pins (P2.0-5) are implemented on the '11x2 and '12x2 devices.
 - 4. (Non)-maskable: the individual interrupt enable bit can disable an interrupt event, but the general interrupt enable cannot.
 - 5. USART0 is implemented in MSP430x12x2 devices only.


MSP430x11x2, MSP430x12x2 MIXED SIGNAL MICROCONTROLLER

SLAS361D - JANUARY 2002 - REVISED AUGUST 2004

special function registers

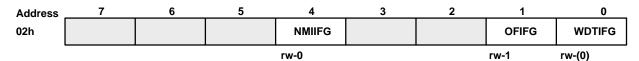
Most interrupt and module enable bits are collected into the lowest address space. Special function register bits that are not allocated to a functional purpose are not physically present in the device. Simple software access is provided with this arrangement.

interrupt enable 1 and 2

WDTIE: Watchdog Timer interrupt enable. Inactive if watchdog mode is selected. Active if Watchdog Timer

is configured in interval timer mode.

OFIE: Oscillator fault enable

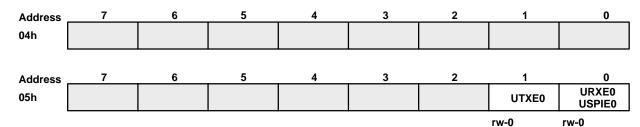

NMIIE: (Non)maskable interrupt enable

ACCVIE: Flash access violation interrupt enable

URXIE0: USART0: UART and SPI receive-interrupt enable (MSP430x12x2 devices only) UTXIE0: USART0: UART and SPI transmit-interrupt enable (MSP430x12x2 devices only)

interrupt flag register 1 and 2

WDTIFG: Set on Watchdog Timer overflow (in watchdog mode) or security key violation.


Reset on V_{CC} power-up or a reset condition at RST/NMI pin in reset mode.

OFIFG: Flag set on oscillator fault NMIIFG: Set via RST/NMI-pin

URXIFG0: USART0: UART and SPI receive flag (MSP430x12x2 devices only) UTXIFG0: USART0: UART and SPI transmit flag (MSP430x12x2 devices only)

module enable registers 1 and 2

URXE0: USART0: UART mode receive enable (MSP430x12x2 devices only)
UTXE0: USART0: UART mode transmit enable (MSP430x12x2 devices only)

USPIE0: USART0: SPI mode transmit and receive enable (MSP430x12x2 devices only)

Legend rw: Bit can be read and written.

rw-0,1: Bit can be read and written. It is Reset or Set by PUC rw-(0,1): Bit can be read and written. It is Reset or Set by POR

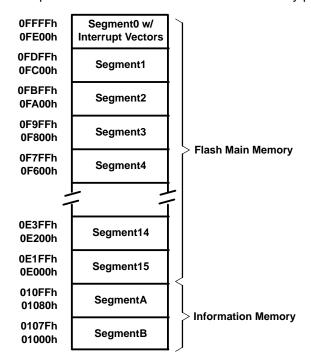
SFR bit is not present in device.

memory organization

		MSP430F1122	MSP430F1132	MSP430F1222	MSP430F1232
Memory	Size	4KB Flash	8KB Flash	4KB Flash	8KB Flash
Main: interrupt vector	Flash	0FFFFh-0FFE0h	0FFFFh-0FFE0h	0FFFFh–0FFE0h	0FFFFh-0FFE0h
Main: code memory	Flash	0FFFFh-0F000h	0FFFFh-0E000h	0FFFFh–0F000h	0FFFFh-0E000h
Information memory	Size	256 Byte	256 Byte	256 Byte	256 Byte
	Flash	010FFh – 01000h	010FFh – 01000h	010FFh – 01000h	010FFh – 01000h
Boot memory	Size	1KB	1KB	1KB	1KB
	ROM	0FFFh – 0C00h	0FFFh – 0C00h	0FFFh – 0C00h	0FFFh – 0C00h
RAM	Size	256 Byte 02FFh – 0200h			
Peripherals	16-bit	01FFh – 0100h	01FFh – 0100h	01FFh – 0100h	01FFh – 0100h
	8-bit	0FFh – 010h	0FFh – 010h	0FFh – 010h	0FFh – 010h
	8-bit SFR	0Fh – 00h	0Fh – 00h	0Fh – 00h	0Fh – 00h

bootstrap loader (BSL)

The MSP430 bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete description of the features of the BSL and its implementation, see the Application report *Features of the MSP430 Bootstrap Loader*, Literature Number SLAA089.


BSL Function	MSP430x11x2 DW & PW Package (20 Pins)	MSP430x12x2 DW & PW Package (28 Pins)	MSP430x11x2/12x2 RHB Package (32 Pins)
Data Transmit	14 - P1.1	22 - P1.1	22 - P1.1
Data Receive	10 - P2.2	10 - P2.2	8 - P2.2

flash memory

The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include:

- Flash memory has n segments of main memory and two segments of information memory (A and B) of 128 bytes each. Each segment in main memory is 512 bytes in size.
- Segments 0 to n may be erased in one step, or each segment may be individually erased.
- Segments A and B can be erased individually, or as a group with segments 0-n.
 Segments A and B are also called information memory.
- New devices may have some bytes programmed in the information memory (needed for test during manufacturing). The user should perform an erase of the information memory prior to the first use.

NOTE: All segments not implemented on all devices.

peripherals

Peripherals are connected to the CPU through data, address, and control busses and can be handled using all instructions. For complete module descriptions, see the MSP430x1xx Family User's Guide, literature number SLAU049.

oscillator and system clock

The clock system in the MSP430x11x2 and MSP430x12x2 devices is supported by the basic clock module that includes support for a 32768-Hz watch crystal oscillator, an internal digitally-controlled oscillator (DCO) and a high frequency crystal oscillator. The basic clock module is designed to meet the requirements of both low system cost and low-power consumption. The internal DCO provides a fast turn-on clock source and stabilizes in less than 6 µs. The basic clock module provides the following clock signals:

- Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal or a high frequency crystal.
- Main clock (MCLK), the system clock used by the CPU.
- Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules.

digital I/O

There are 3 8-bit I/O ports implemented—ports P1, P2, and P3 (only six port P2 I/O signals are available on external pins; port P3 is implemented only on 'x12x2 devices):

- All individual I/O bits are independently programmable.
- Any combination of input, output, and interrupt conditions is possible.
- Edge-selectable interrupt input capability for all the eight bits of ports P1 and six bits of port P2.
- Read/write access to port-control registers is supported by all instructions.

NOTE

Six bits of port P2, P2.0 to P2.5, are available on external pins, but all control and data bits for port P2 are implemented. Port P3 has no interrupt capability. Port P3 is implemented in MSP430x12x2 only.

brownout

The brownout circuit is implemented to provide the proper internal reset signal to the device during power on and power off.

watchdog timer

The primary function of the watchdog timer (WDT) module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals.

USARTO (MSP430x12x2 Only)

The MSP430x12x2 devices have one hardware universal synchronous/asynchronous receive transmit (USART0) peripheral module that is used for serial data communication. The USART supports synchronous SPI (3 or 4 pin) and asynchronous UART communication protocols, using double-buffered transmit and receive channels.

ADC₁₀

The ADC10 module supports fast, 10-bit analog-to-digital conversions. The module implements a 10-bit SAR core, sample select control, reference generator and data transfer controller, or DTC, for automatic conversion result handling allowing ADC samples to be converted and stored without any CPU intervention.

MSP430x11x2, MSP430x12x2 MIXED SIGNAL MICROCONTROLLER

SLAS361D - JANUARY 2002 - REVISED AUGUST 2004

timer_A3

Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

	Timer_A3 Signal Connections								
In	put Pin Nun	nber					Output Pin Number		
DW a	nd PW	RHB	Device Input Signal	Module	Module	Module Output	DW a	nd PW	RHB
'11x2 20-Pin	'12x2 28-Pin	'11x2/12x2 32-Pin		Input Name	Block	Signal	'11x2 20-Pin	'12x2 28-Pin	'11x2/12x2 32-Pin
13 - P1.0	21 - P1.0	21 - P1.0	TACLK	TACLK					
			ACLK	ACLK	T				
			SMCLK	SMCLK	Timer	NA			
9 - P2.1	9 - P2.1	7 - P2.1	INCLK	INCLK					
14 - P1.1	22 - P1.1	22 - P1.1	TA0	CCI0A		T10	14 - P1.1	22 - P1.1	22 - P1.1
10 - P2.2	10 - P2.2	8 - P2.2	TA0	CCI0B			18 - P1.5	26 - P1.5	26 - P1.5
			DV _{SS}	GND	CCR0	TA0	10 - P2.2	10 - P2.2	8 - P2.2
			DV _{CC}	V _{CC}			ADC10 Internal		
15 - P1.2	23 - P1.2	23 - P1.2	TA1	CCI1A			15 - P1.2	23 - P1.2	23 - P1.2
11 - P2.3	19 - P2.3	18 - P2.3	TA1	CCI1B	l l	T	19 - P1.6	27 - P1.6	27 - P1.6
			DV _{SS}	GND	CCR1	TA1	11 - P2.3	19 - P2.3	18 - P2.3
			DV _{CC}	V _{CC}			A	ADC10 Interi	nal
16 - P1.3	24 - P1.3	24 - P1.3	TA2	CCI2A			16 - P1.3	24 - P1.3	24 - P1.3
			ACLK (internal)	CCI2B	0000	T40	20 - P1.7	28 - P1.7	28 - P1.7
			DV _{SS}	GND	CCR2	TA2	12 - P2.4	20 - P2.4	19 - P2.4
			DV _{CC}	V _{CC}			A	DC10 Interi	nal

peripheral file map

PERIPHERALS WITH WORD ACCESS					
ADC10	ADC data transfer start address ADC memory ADC control register 1 ADC control register 0 ADC analog enable ADC data transfer control register 1 ADC data transfer control register 0	ADC10SA ADC10MEM ADC10CTL1 ADC10CTL0 ADC10AE ADC10DTC1 ADC10DTC0	1BCh 1B4h 1B2h 1B0h 04Ah 049h 048h		
Timer_A	Reserved Reserved Reserved Reserved Capture/compare register Capture/compare register Capture/compare register Timer_A register Reserved Reserved Reserved Reserved Capture/compare control Capture/compare control Capture/compare control Timer_A control	TACCR2 TACCR1 TACCR0 TAR TACCTL2 TACCTL1 TACCTL0 TACTL TACCTL TACTL	017Eh 017Ch 017Ah 0178h 0178h 0176h 0172h 0170h 016Eh 016Ch 016Ah 0168h 0166h 0164h 0162h 0160h		
Flash Memory	Timer_A interrupt vector Flash control 3 Flash control 2 Flash control 1	FCTL3 FCTL2 FCTL1	012Ch 012Ah 0128h		
Watchdog	Watchdog/timer control	WDTCTL	0120h		
	PERIPHERALS WITH BYTE ACCESS	1.	ı		
USART0 (in MSP430x12x2 only)	Transmit buffer Receive buffer Baud rate Baud rate Modulation control Receive control Transmit control USART control	UOTXBUF UORXBUF UOBR1 UOBR0 UOMCTL UORCTL UOTCTL UOCTL	077h 076h 075h 074h 073h 072h 071h 070h		
Basic Clock	Basic clock sys. control2 Basic clock sys. control1 DCO clock freq. control	BCSCTL2 BCSCTL1 DCOCTL	058h 057h 056h		
Port P2	Port P2 selection Port P2 interrupt enable Port P2 interrupt edge select Port P2 interrupt flag Port P2 direction Port P2 output Port P2 input	P2SEL P2IE P2IES P2IFG P2DIR P2OUT P2IN	02Eh 02Dh 02Ch 02Bh 02Ah 029h 028h		
Port P1	Port P1 selection Port P1 interrupt enable Port P1 interrupt edge select Port P1 interrupt flag Port P1 direction Port P1 output Port P1 input	P1SEL P1IE P1IES P1IFG P1DIR P1OUT P1IN	026h 025h 024h 023h 022h 021h 020h		

peripheral file map (continued)

PERIPHERALS WITH BYTE ACCESS (CONTINUED)					
Port P3 (in MSP430x12x2 only)	Port P3 selection Port P3 direction Port P3 output Port P3 input	P3SEL P3DIR P3OUT P3IN	01Bh 01Ah 019h 018h		
Special Function	Module enable2 Module enable1 SFR interrupt flag2 SFR interrupt flag1 SFR interrupt enable2 SFR interrupt enable1	ME2 ME1 IFG2 IFG1 IE2 IE1	005h 004h 003h 002h 001h 000h		

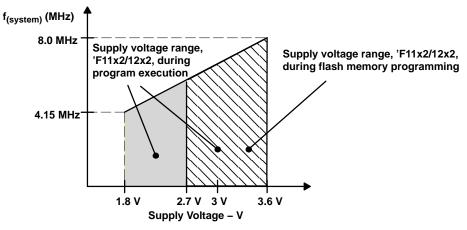
absolute maximum ratings†

Voltage applied at V _{CC} to V _{SS}	–0.3 V to 4.1 V
Voltage applied to any pin (see Note)	0.3 V to V _{CC} + 0.3 V
Diode current at any device terminal	±2 mA
Storage temperature, T _{sta} (unprogrammed device)	–55°C to 150°C
Storage temperature, T _{sta} (programmed device) .	–40°C to 85°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE: All voltages referenced to VSS. The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage is applied to the TEST pin when blowing the JTAG fuse.

recommended operating conditions


			MIN	NOM	MAX	UNITS
Supply voltage during program execution, \	/ _{CC} (see Note 1)	MSP430F11x2	1.8		3.6	V
Supply voltage during program/erase flash	memory, V _{CC}	MSP430F12x2	2.7		3.6	V
Supply voltage, V _{SS}	117 0 1 00			0		V
Operating free-air temperature range, T _A		MSP430F11x2 MSP430F12x2	-40		85	°C
E)(T4	LF mode selected, XTS=0	Watch crystal		32768		Hz
LFXT1 crystal frequency, f _(LFXT1) (see Note 1 & Note 2)	VT4 colored made VTC 4	Ceramic resonator	450		8000	1-11-
(See Note 1 & Note 2)	XT1 selected mode, XTS=1	Crystal	1000		8000	kHz
	V _{CC} = 1.8 V, MSP430F11x2 MSP430F12x2	dc		4.15		
Processor frequency f _(system) (MCLK signa)	V _{CC} = 3.6 V, MSP430F11x2 MSP430F12x2	dc		8	MHz

NOTES: 1. The LFXT1 oscillator in LF-mode requires a resistor of 5.1 M Ω from XOUT to V_{SS} when V_{CC} <2.5 V. The LFXT1 oscillator in XT1-mode accepts a ceramic resonator or a crystal frequency of 4 MHz at $V_{CC} \ge 2.2 \text{ V}$. The LFXT1 oscillator in XT1-mode accepts a ceramic resonator or a crystal frequency of 8 MHz at $V_{CC} \ge 2.8 \text{ V}$.

2. The LFXT1 oscillator in LF-mode requires a watch crystal. The LFXT1 oscillator in XT1-mode accepts a ceramic resonator or a crystal.

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

NOTE: Minimum processor frequency is defined by system clock. Flash program or erase operations require a minimum V_{CC} of 2.7 V.

Figure 1. Frequency vs Supply Voltage

supply current (into V_{CC}) excluding external current

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT	
		$T_A = -40^{\circ}\text{C} + 85^{\circ}\text{C},$ $f_{\text{MCLK}} = f_{\text{(SMCLK)}} = 1 \text{ MHz},$	V _{CC} = 2.2 V		200	250	^	
I _(AM)	Active mode	_{f(ACLK)} = 32,768 Hz, Program executes in Flash	V _{CC} = 3 V		300	350	μΑ	
,		$T_A = -40^{\circ}C + 85^{\circ}C,$	V _{CC} = 2.2 V		3	5	^	
		$f_{(MCLK)} = f_{(SMCLK)} = f_{(ACLK)} = 4096 \text{ Hz},$ Program executes in Flash	V _{CC} = 3 V		11	18	μΑ	
	Low power made (LDMO)	$T_A = -40^{\circ}\text{C} + 85^{\circ}\text{C},$	V _{CC} = 2.2 V		32	45	^	
I _(CPUOff)	Low-power mode, (LPM0)	$f_{(MCLK)} = 0$, $f_{(SMCLK)} = 1$ MHz, $f_{(ACLK)} = 32,768$ Hz	V _{CC} = 3 V		55	70	μΑ	
	Low-power mode, (LPM2)	$T_A = -40^{\circ}\text{C} + 85^{\circ}\text{C},$	V _{CC} = 2.2 V		11	14	^	
I _(LPM2)		$f_{(MCLK)} = f_{(SMCLK)} = 0 \text{ MHz},$ $f_{(ACLK)} = 32,768 \text{ Hz}, SCG0 = 0$	V _{CC} = 3 V		17	22	μΑ	
		$T_A = -40^{\circ}C$				0.8	1.2	
		T _A = 25°C	V _{CC} = 2.2 V		0.7	1	μΑ	
	Laurania and (LDM2)	T _A = 85°C			1.6	2.3		
I _(LPM3)	Low-power mode, (LPM3)	$T_A = -40^{\circ}C$			1.8	2.2		
		T _A = 25°C	V _{CC} = 3 V		1.6	1.9	μΑ	
		T _A = 85°C			2.3	3.4	1	
		$T_A = -40^{\circ}C$			0.1	0.5		
I _(LPM4)	Low-power mode, (LPM4)	T _A = 25°C	V _{CC} = 2.2 V/3 V		0.1	0.5	μΑ	
•		T _A = 85°C			0.8	1.9		

NOTES: 1. All inputs are tied to 0 V or V_{CC} . Outputs do not source or sink any current.

current consumption of active mode versus system frequency

 $I_{AM} = I_{AM[1 \text{ MHz}]} \times f_{system} [MHz]$

current consumption of active mode versus supply voltage

$$I_{AM} = I_{AM[3\ V]} + 120\ \mu A/V \times (V_{CC} - 3\ V)$$

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

Schmitt-trigger inputs Port P1 to Port P3; P1.0 to P1.7, P2.0 to P2.5, P3.0 to P3.7

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
V. –	Desiring aging insult through all displaces	V _{CC} = 2.2 V	1.1	1.5	V
V _{IT+}	V _{IT+} Positive-going input threshold voltage	V _{CC} = 3 V	1.5	1.9	V
.,	No notice and an important described by the second	V _{CC} = 2.2 V	0.4	0.9	.,
V_{IT-}	Negative-going input threshold voltage	V _{CC} = 3 V	0.9	1.3	V
V _{hys}	Input voltage hyptoresis (V V V	V _{CC} = 2.2 V	0.3	1.1	V
	Input voltage hysteresis, (V _{IT+} – V _{IT} _)	V _{CC} = 3 V	0.5	1	V

standard inputs - RST/NMI, TEST; JTAG: TCK, TMS, TDI/TCLK

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V_{IL}	Low-level input voltage	V - 2 2 V / 2 V	V_{SS}		V _{SS} +0.6	٧
V_{IH}	High-level input voltage	$V_{CC} = 2.2 \text{ V} / 3 \text{ V}$			V_{CC}	V

inputs Px.x, TAx

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
			2.2 V/3 V	1.5			cycle
t _(int)	External interrupt timing	Port P1, P2: P1.x to P2.x, External trigger signal for the interrupt flaq, (see Note 1)	2.2 V	62			
		To the monapting, (occition)	3 V	50			ns
	Timer_A, capture timing	TAO TAA TAO	2.2 V	62			
t _(cap)		TA0, TA1, TA2	3 V	50			ns
ı	Timer_A clock frequency	TACLIC INCLICA	2.2 V			8	MI I-
f _(TAext)	externally applied to pin	TACLK, INCLK $t_{(H)} = t_{(L)}$	3 V			10	MHz
f _(TAint)	Timer_A clock frequency	21014 1014 1 1 1 1	2.2 V			8	MHz
		SMCLK or ACLK signal selected	3 V			10	IVIHZ

NOTES: 1. The external signal sets the interrupt flag every time the minimum $t_{(int)}$ cycle and time parameters are met. It may be set even with trigger signals shorter than $t_{(int)}$. Both the cycle and timing specifications must be met to ensure the flag is set. $t_{(int)}$ is measured in MCLK cycles.

leakage current

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
I _{lkg(Px.x)}		Port P1: P1.x, $0 \le x \le 7$ (see Notes 1 and 2)	2.2 V/3 V		±50		A
		Port P2: P2.x, $0 \le x \le 5$ (see Notes 1 and 2)	2.2 V/3 V			±50	nA

NOTES: 1. The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.

2. The leakage of the digital port pins is measured individually. The port pin must be selected for input and there must be no optional pullup or pulldown resistor.

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

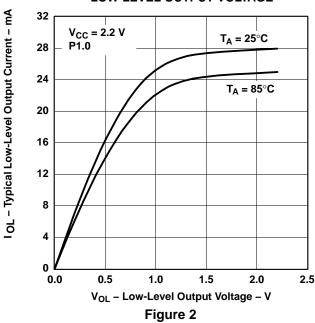
outputs Port 1 to Port 3; P1.0 to P1.7, P2.0 to P2.5, P3.0 to P3.7

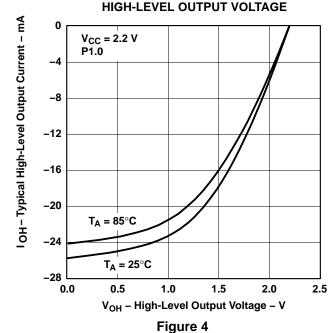
	PARAMETER	TEST	CONDITIONS		MIN	TYP MAX	UNIT
		$I_{(OHmax)} = -1.5 \text{ mA}$	V 22V	See Note 1	V _{CC} -0.25	V_{CC}	
V High lavel autout valtage	$I_{(OHmax)} = -6 \text{ mA}$	$V_{CC} = 2.2 \text{ V}$	See Note 2	V _{CC} -0.6	V_{CC}	\ <i>\</i>	
V _{OH}	High-level output voltage	$I_{(OHmax)} = -1.5 \text{ mA}$	V 2V	See Note 1	V _{CC} -0.25	V_{CC}	V
		$I_{(OHmax)} = -6 \text{ mA}$	$V_{CC} = 3 V$	See Note 2	V _{CC} -0.6	V_{CC}	
		$I_{(OLmax)} = 1.5 \text{ mA}$		See Note 1	V_{SS}	V _{SS} +0.25	
.,	Law law law and a set of continuous	I _(OLmax) = 6 mA	$V_{CC} = 2.2 \text{ V}$	See Note 2	V_{SS}	V _{SS} +0.6	
V _{OL}	Low-level output voltage	$I_{(OLmax)} = 1.5 \text{ mA}$	V - 2 V	See Note 1	V _{SS}	V _{SS} +0.25	V
		I _(OLmax) = 6 mA	$V_{CC} = 3 V$	See Note 2	V_{SS}	V _{SS} +0.6	

- NOTES: 1. The maximum total current, I_{OHmax} and I_{OLmax}, for all outputs combined, should not exceed ±12 mA to hold the maximum voltage drop specified.
 - 2. The maximum total current, I_{OHmax} and I_{OLmax}, for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop specified.

outputs P1.x, P2.x, P3.x, TAx

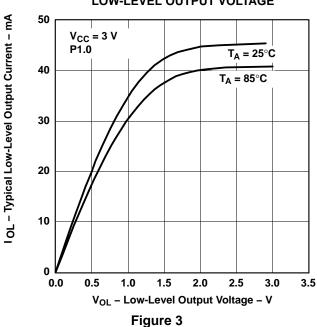
	PARAMETER	TES	T CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT		
f _(P20)		P2.0/ACLK, C _L = 20 pF		2.2 V/3 V			f _{System}			
f _(TAx)	Output frequency	TA0, TA1, TA2, C _L = 20 pF, Internal clock source, SMCLK signal applied (see Note 1)		2.2 V/3 V	dc		f _{System}	MHz		
			f _{SMCLK} = f _{LFXT1} = f _{XT1}		40%		60%			
		I ISMCLK = IDCOCLK	f _{SMCLK} = f _{LFXT1} = f _{LF}	2.2 V/3 V	35%		65%			
			$f_{\text{SMCLK}} = f_{\text{LFXT1/n}}$	2.2 0,0 0	50%– 15 ns	50%	50%+ 15 ns			
t _(Xdc)	Duty cycle of O/P frequency		f _{SMCLK} = f _{DCOCLK}	2.2 V/3 V	50%– 15 ns	50%	50%+ 15 ns			
			$f_{P20} = f_{LFXT1} = f_{XT1}$		40%		60%			
		P2.0/ACLK, $C_L = 20 \text{ pF}$ $f_{P20} = f_{LFXT1} = f_{LF}$ $f_{P20} = f_{LFXT1/n}$	$f_{P20} = f_{LFXT1} = f_{LF}$	$f_{DOO} = f_{UDVT4} = f_{UD} \qquad \qquad 122 \text{ V/3}$	$f_{DOO} = f_{LEVTA} = f_{LE}$ $\frac{122 \text{ V/3 V}}{3}$	f	30%		70%	
					50%					
t _(TAdc)		TA0, TA1, TA2,	$C_L = 20 \text{ pF}$, Duty cycle = 50%	2.2 V/3 V		0	±50	ns		


NOTES: 1. The limits of the system clock MCLK has to be met. MCLK and SMCLK can have different frequencies.


electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

outputs - Ports P1, P2, and P3 (see Note)

TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE



TYPICAL HIGH-LEVEL OUTPUT CURRENT vs

NOTE: Only one output is loaded at a time.

TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE

TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE

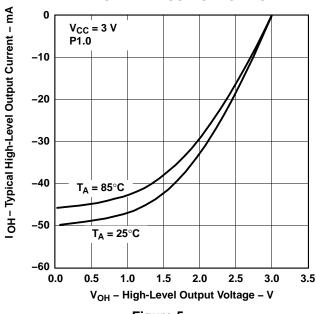


Figure 5

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

wake-up from lower power modes (LPMx)

	PARAMETER	TEST CO	NDITIONS	MIN	TYP	MAX	UNIT
t _(LPM0)		$V_{CC} = 2.2 \text{ V/3 V}$			100		
t _(LPM2)		V _{CC} = 2.2 V/3 V			100		ns
		$f_{(MCLK)} = 1 MHz,$	$V_{CC} = 2.2 \text{ V/3 V}$			6	
t(LPM3)	Delay time (see Note 1)	$f_{(MCLK)} = 2 MHz,$	$V_{CC} = 2.2 \text{ V/3 V}$			6	μs
		$f_{(MCLK)} = 3 MHz,$	$V_{CC} = 2.2 \text{ V/3 V}$			6	
		$f_{(MCLK)} = 1 MHz,$	$V_{CC} = 2.2 \text{ V/3 V}$			6	
t(LPM4)		$f_{(MCLK)} = 2 MHz,$	$V_{CC} = 2.2 \text{ V/3 V}$			6	μs
		$f_{(MCLK)} = 3 MHz,$	$V_{CC} = 2.2 \text{ V/3 V}$			6	

NOTES: 1. Parameter applicable only if DCOCLK is used for MCLK.

USART (see Note 1)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _(τ)	(z) USART: dealitch time	V _{CC} = 2.2 V	200	430	800	20
	(t) USART. deglitch time	V _{CC} = 3 V	150	280	500	ns

NOTES: 1. The signal applied to the USART receive signal/terminal (URXD) should meet the timing requirements of $t_{(\tau)}$ to ensure that the URXS flip-flop is set. The URXS flip-flop is set with negative pulses meeting the minimum-timing condition of $t_{(\tau)}$. The operating conditions to set the flag must be met independently from this timing constraint. The deglitch circuitry is active only on negative transitions on the URXD line.

RAM

	PARAMETER	MIN	NOM	MAX	UNIT
V _(RAMh)	CPU halted (see Note 1)	1.6			V

NOTES: 1. This parameter defines the minimum supply voltage V_{CC} when the data in the program memory RAM remains unchanged. No program execution should happen during this supply voltage condition.

POR brownout, reset (see Notes 1 and 2)

PARAMI	ETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{d(BOR)}					2000	μs
V _{CC(start)}		$dV_{CC}/dt \le 3 \text{ V/s}$	($0.7 \times V_{(B_IT-)}$		٧
V _(B_IT-)	Brownout	$dV_{CC}/dt \le 3 \text{ V/s}$			1.71	V
V _{hys(B_IT-)}	Diownout	$dV_{CC}/dt \le 3 \text{ V/s}$	70	130	180	mV
t _(reset)		Pulse length needed at \overline{RST}/NMI pin to accepted reset internally, $V_{CC} = 2.2 \text{ V/3 V}$	2			μs

NOTES: 1. The current consumption of the brown-out module is already included in the I_{CC} current consumption data.

During power up, the CPU begins code execution following a period of t_{d(BOR)} after V_{CC} = V_(B_IT-) + V_{hys(B_IT-)}.
 The default DCO settings must not be changed until V_{CC} ≥ V_{CC(min)}, where V_{CC(min)} is the minimum supply voltage for the desired operating frequency. See the MSP430x1xx Family User's Guide for more information on the brownout circuit.

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

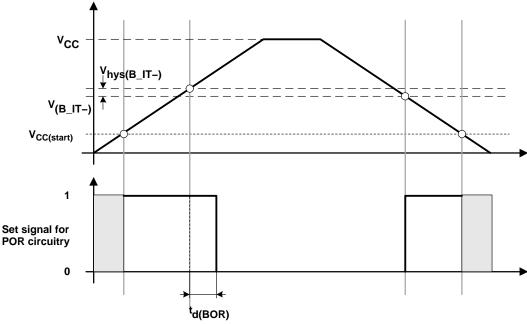


Figure 6. POR/Brownout Reset (BOR) vs Supply Voltage

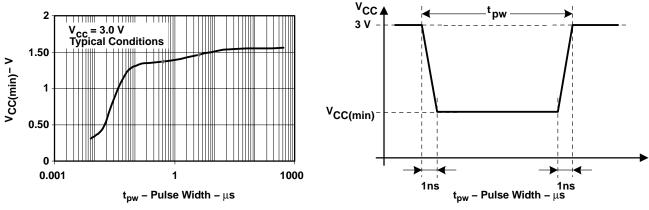


Figure 7. V_{CC(min)} Level With a Square Voltage Drop to Generate a POR/Brownout Signal

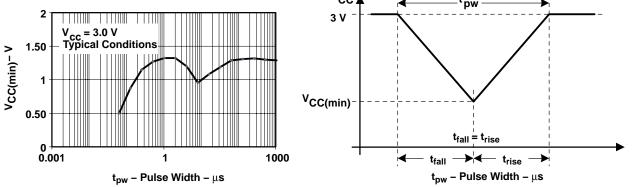


Figure 8. V_{CC(min)} Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

DCO

PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
,	D 0 000 0 MOD 0 000D 0 T 0500	2.2 V	0.08	0.12	0.15	N.41.1-
f(DCO03)	$R_{sel} = 0$, DCO = 3, MOD = 0, DCOR = 0, $T_A = 25$ °C	3 V	0.08	0.13	0.16	MHz
4	$R_{sol} = 1$, DCO = 3, MOD = 0, DCOR = 0, $T_{\Delta} = 25^{\circ}$ C	2.2 V	0.14	0.19	0.23	MHz
f _(DCO13)	R _{Sel} = 1, DCO = 3, MOD = 0, DCOR = 0, 1 _A = 25°C	3 V	0.14	0.18	0.22	IVI□Z
f _(DCO23)	$R_{sol} = 2$, DCO = 3, MOD = 0, DCOR = 0, $T_{\Delta} = 25$ °C	2.2 V	0.22	0.3	0.36	MHz
1(DCO23)	N _{sel} = 2, Boo = 3, Mob = 0, Book = 0, I _A = 25 0	3 V	0.22	0.28	0.34	IVII IZ
frances	$R_{Sel} = 3$, DCO = 3, MOD = 0, DCOR = 0, $T_A = 25$ °C	2.2 V	0.37	0.49	0.59	MHz
f _(DCO33)	N _{Sel} = 3, DCO = 3, MOD = 0, DCON = 0, I _A = 23 C	3 V	0.37	0.47	0.56	IVII IZ
f	$R_{Sel} = 4$, DCO = 3, MOD = 0, DCOR = 0, $T_A = 25$ °C	2.2 V	0.61	0.77	0.93	MHz
f(DCO43)	$ R_{Sel} = 4$, $DCO = 3$, $NIOD = 0$, $DCOR = 0$, $ I_A = 23$ C	3 V	0.61	0.75	0.9	IVITIZ
f	$R_{sol} = 5$, DCO = 3, MOD = 0, DCOR = 0, $T_{\Delta} = 25^{\circ}$ C	2.2 V	1	1.2	1.5	MHz
f _(DCO53)	$R_{\text{Sel}} = 5$, $DCO = 3$, $NIOD = 0$, $DCOR = 0$, $T_A = 25$ C	3 V	1	1.3	1.5	IVITIZ
t .	D 6 DCC 2 MOD 0 DCCD 0 T 259C	2.2 V	1.6	1.9	2.2	MHz
f(DCO63)	$R_{sel} = 6$, DCO = 3, MOD = 0, DCOR = 0, $T_A = 25$ °C	3 V	1.69	2	2.29	IVITIZ
t .	D 7 DCO 2 MOD 0 DCOD 0 T 259C	2.2 V	2.4	2.9	3.4	MHz
f(DCO73)	$R_{sel} = 7$, DCO = 3, MOD = 0, DCOR = 0, $T_A = 25$ °C	3 V	2.7	3.2	3.65	IVITIZ
,	D 7 D00 7 M0D 0 D00D 0 7 0500	2.2 V	4	4.5	4.9	
f _(DCO77)	$R_{sel} = 7$, DCO = 7, MOD = 0, DCOR = 0, $T_A = 25$ °C	3 V	4.4	4.9	5.4	MHz
f _(DCO47)	R _{Sel} = 4, DCO = 7, MOD = 0, DCOR = 0, T _A = 25°C	2.2 V/3 V	f _{DCO40} x1.7	f _{DCO40} x2.1	f _{DCO40} x2.5	MHz
S _(Rsel)	$S_R = f_{Rsel+1}/f_{Rsel}$	2.2 V/3 V	1.35	1.65	2	
S _(DCO)	$S_{DCO} = f_{DCO+1}/f_{DCO}$	2.2 V/3 V	1.07	1.12	1.16	ratio
		2.2 V	-0.31	-0.36	-0.4	24/20
D _t	Temperature drift, R _{sel} = 4, DCO = 3, MOD = 0 (see Note 1)	3 V	-0.33	-0.38	-0.43	%/°C
D _V	Drift with V_{CC} variation, $R_{sel} = 4$, DCO = 3, MOD = 0 (see Note 1)	2.2 V/3 V			±5	%/V

NOTES: 1. These parameters are not production tested.

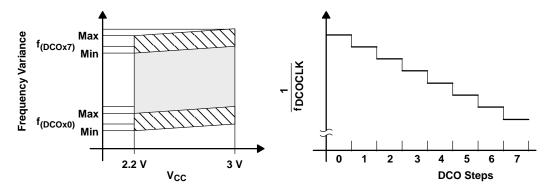


Figure 9. DCO Characteristics

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)

main DCO characteristics

- Individual devices have a minimum and maximum operation frequency. The specified parameters for $f_{(DCOx0)}$ to $f_{(DCOx7)}$ are valid for all devices.
- All ranges selected by Rsel(n) overlap with Rsel(n+1): Rsel0 overlaps Rsel1, ... Rsel6 overlaps Rsel7.
- DCO control bits DCO0, DCO1, and DCO2 have a step size as defined by parameter S_{DCO}.
- Modulation control bits MOD0 to MOD4 select how often f_(DCO+1) is used within the period of 32 DCOCLK cycles. The frequency f_(DCO) is used for the remaining cycles. The frequency is an average equal to:

$$f_{average} = \frac{32 \times f_{(DCO)} \times f_{(DCO+1)}}{MOD \times f_{(DCO)} + (32 - MOD) \times f_{(DCO+1)}}$$

DCO when using R_{OSC} (see Note 1)

PARAMETER	TEST CONDITIONS	V _{CC}	MIN NOM	MAX	UNIT
f DCO output fraguancy	R _{sel} = 4, DCO = 3, MOD = 0, DCOR = 1,	2.2 V	1.8±15%		MHz
f _{DCO} , DCO output frequency	T _A = 25°C	3 V	1.95±15%		MHz
D _t , Temperature drift	R _{sel} = 4, DCO = 3, MOD = 0, DCOR = 1	2.2 V/3 V	±0.1		%/°C
D _v , Drift with V _{CC} variation	R _{sel} = 4, DCO = 3, MOD = 0, DCOR = 1	2.2 V/3 V	10		%/V

NOTES: 1. $R_{OSC} = 100k\Omega$. Metal film resistor, type 0257. 0.6 watt with 1% tolerance and $T_K = \pm 50$ ppm/°C.

crystal oscillator, LFXT1

P/	RAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
C _{XIN} Pin load capacitance		XTS=0; LF mode selected	2.2 V / 3 V		12		pF
		XTS=1; XT1 mode selected (see Note 1)	2.2 V / 3 V		2	2	
0	Pin load	XTS=0; LF mode selected	2.2 V / 3 V		12		=
C _{XOUT}	capacitance	XTS=1; XT1 mode selected (see Note 1)	2.2 V / 3 V		2		pF
V _{IL}	Input levels at XIN	see Note 2	2.2 V / 3 V	V _{SS}	0.2	$2 \times V_{CC}$	V
V_{IH}	Input levels at Ally	See Note 2	2.2 V / 3 V	$0.8 \times V_{CC}$		V_{CC}	V

NOTES: 1. Requires external capacitors at both terminals. Values are specified by crystal manufacturers.

2. Applies only when using an external logic-level clock source. Not applicable when using a crystal or resonator.

electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

10-bit ADC, power supply and input range conditions (see Note 1)

	PARAMETER	TEST CONDITIONS	TEST CONDITIONS		NOM	MAX	UNIT
V _{CC}	Analog supply voltage	V _{SS} = 0 V		2.2		3.6	V
V _(P6.x/Ax)	Analog input voltage range (see Note 2)	All Ax terminals. Analog inputs selected in ADC10AE register and P $V_{SS} \le V_{Px,x/Ax} \le V_{CC}$	elected in ADC10AE register and PxSel.x=1 $SS \le V_{Px.x/Ax} \le V_{CC}$			V _{CC}	V
1	Operating supply current	f _{ADC10CLK} = 5.0 MHz ADC10ON = 1, REFON = 0	V _{CC} = 2.2 V		0.52	1.05	A
I _{ADC10}	into V _{CC} terminal (see Note 3)	ADC10SHT0=1, ADC10SHT1=0, ADC10DIV=0	V _{CC} = 3 V		0.6	1.2	mA
I _{REF+}	Reference operating supply current, reference buffer disabled (see Note 4)	f _{ADC10CLK} = 5.0 MHz ADC10ON = 0, REFON = 1, REF2_5V = x; REFOUT = 0	V _{CC} = 2.2V/3 V		0.25	0.4	mA
	Reference buffer operating supply current	f _{ADC10CLK} = 5.0 MHz ADC10ON = 0,	ADC10SR = 0		1.1	1.4	mA
I _{REFB}	(see Note 4)	REFON = 1, REF2_5V = 0 REFOUT = 1	ADC10SR = 1		0.46	0.55	mA
C _I †	Input capacitance	Only one terminal can be selected at one time, Px.x/Ax	V _{CC} = 2.2 V			27	pF
R _I [†]	Input MUX ON resistance	$0V \le V_{Ax} \le V_{CC}$	V _{CC} = 3 V			2000	Ω

[†] Not production tested, limits verified by design

NOTES: 1. The leakage current is defined in the leakage current table with Px.x/Ax parameter.

- 2. The analog input voltage range must be within the selected reference voltage range V_{R+} to V_{R-} for valid conversion results.
- 3. The internal reference supply current is not included in current consumption parameter I_{ADC10}.
- 4. The internal reference current is supplied via terminal V_{CC}. Consumption is independent of the ADC10ON control bit, unless a conversion is active. The REFON bit enables the built-in reference to settle before starting an A/D conversion.

10-bit ADC, external reference (see Note 1)

PA	RAMETER	TEST CONDITIONS	V _{CC}	MIN	NOM	MAX	UNIT
V _{eREF+}	Positive external reference voltage input	V _{eREF+} > V _{REF} _/V _{eREF} _ (see Note 2)	V _{eREF+} > V _{REF} _/V _{eREF} _ (see Note 2)			V _{CC}	٧
V _{REF-} /V _{eREF-}	Negative external reference voltage input	V _{eREF+} > V _{REF-} /V _{eREF-} (see Note 3)		0		1.2	V
(V _{eREF+} - V _{REF-/} V _{eREF-})	Differential external reference voltage input	V _{eREF+} > V _{REF} _/V _{eREF} _ (see Note 4)		1.4		V _{CC}	V
I _{VeREF+}	Static input current	0V ≤V _{eREF+} ≤ V _{CC}	2.2 V/3 V			±1	μΑ
I _{VREF-/VeREF-}	Static input current	0V ≤ V _{eREF} ≤ V _{CC}	2.2 V/3 V			±1	μΑ

- NOTES: 1. The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, C₁, is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 10-bit accuracy.
 - 2. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements.
 - 3. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements.
 - 4. The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements.

electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

10-bit ADC, built-in reference

	PARAMETER	TEST CONDITIONS	3	MIN	NOM	MAX	UNIT
.,	Positive built-in reference	REF2_5V = 1 for 2.5 V $I_{VREF+} \le I_{VREF+}$ max	V _{CC} = 3 V	2.35	2.5	2.65	.,,
V _{REF+}	voltage output	REF2_5V = 0 for 1.5 V $I_{VREF+} \le I_{VREF+}$ max	V _{CC} = 2.2 V/3 V	1.41	1.5	1.59	V
	V _{CC} minimum voltage,	REF2_5V = 0, $I_{VREF+} \le 1mA$	•	2.2			
V _{CC(min)}	Positive built-in reference	REF2_5V = 1, $I_{VREF+} \le 0.5$ mA		V _{REF+} + 0	.15		V
	active	REF2_5V = 1, I _{VREF+} ≤ 1mA		V _{REF+} + 0	.15		
	Load current out of V _{REF+}		$V_{CC} = 2.2 \text{ V}$			±0.5	A
I _{VREF+}	terminal		$V_{CC} = 3 V$			±1	mA
		I _{VREF+} = 500 μA +/- 100 μA	V _{CC} = 2.2 V			±2	1.00
. 4	Load-current regulation	Analog input voltage ~0.75 V; REF2_5V = 0	V _{CC} = 3 V			±2	LSB
I _{L(VREF)+} †	V _{REF+} terminal	I_{VREF+} = 500 μA ± 100 μA Analog input voltage ~1.25 V; REF2_5V = 1	V _{CC} = 3 V			±2	LSB
	Load current regulation	I_{VREF+} =100 μA \rightarrow 900 μA,	ADC10SR = 0			400	
t _{DL(VREF) +} ‡	V _{REF+} terminal	V _{CC} =3 V, Ax ~0.5 x V _{REF+} Error of conversion result ≤ 1 LSB	ADC10SR = 1			2000	ns
C _{VREF+}	Capacitance at pin V _{REF+} (see Note 1)	REFON =1, I _{VREF+} ≤±1 mA	V _{CC} = 2.2 V/3 V			100	pF
T _{REF+} †	Temperature coefficient of built-in reference	I_{VREF+} is a constant in the range of 0 mA \leq $I_{VREF+} \leq$ 1 mA	V _{CC} = 2.2 V/3 V			±100	ppm/°C
Settle time of internal reference voltage and		I_{VREF+} = 0.5 mA, V_{REF+} = 1.5 V, V_{CC} = 3.6 V, REFON = 0 \rightarrow 1				30	_
t _{REFON} †	V _{REF+}	$I_{VREF+} = 0.5 \text{ mA}, V_{REF+} = 1.5 \text{ V},$	ADC10SR = 0			8.0	μs
	(see Note 2)	V _{CC} = 2.2 V, REFON = 1	ADC10SR = 1			2.5	

[†] Not production tested, limits characterized

[‡] Not production tested, limits verified by design

NOTES: 1. The capacitance applied to the internal buffer operational amplifier, if switched to terminal P2.4/TA2/A4/V_{REF+}/V_{eREF+} (REFOUT=1), must be limited; the reference buffer may become unstable otherwise.

^{2.} The condition is that the error in a conversion started after t_{REFON} is less than ± 0.5 LSB.

electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

10-bit ADC, timing parameters

ı	PARAMETER	TEST CONDITION	s	MIN	NOM	MAX	UNIT
,		For specified performance of	ADC10SR = 0	0.450		6.3	N 41 1-
fADC10CLK		ADC10 linearity parameters	ADC10SR = 1	0.450		1.5	MHz
f _{ADC10OSC}		ADC10DIV=0, fADC10CLK=fADC10OSC	V _{CC} = 2.2 V/ 3V	3.7		6.3	MHz
tCONVERT	Conversion time	Internal oscillator, f _{ADC10OSC} = 3.7 MHz to 6.3 MHz	V _{CC} = 2.2 V/ 3 V	2.06		3.51	μs
CONVENT		External f _{ADC10CLK} from ACLK, MCLK or SMCLK: ADC10SSEL ≠ 0			13×ADC10DIV× 1/f _{ADC10CLK}		μs
t _{ADC10ON} ‡	Turn on settling time of the ADC	(see Note 1)				100	ns
+ ±	Sampling time	$R_S = 400 \Omega, R_I = 2000 \Omega,$	$V_{CC} = 3 V$	1400			no
t _{Sample} [‡]	Sampling time	C _I = 20 pF (see Note 2)	V _{CC} = 2.2 V	1400	·		ns

[†] Not production tested, limits characterized

NOTES: 1. The condition is that the error in a conversion started after t_{ADC100N} is less than ±0.5 LSB. The reference and input signal are already settled.

2. Approximately eight Tau (τ) are needed to get an error of less than ± 0.5 LSB. $t_{Sample} = ln(2^{n+1}) \times (R_S + R_I) \times C_I + 800$ ns. (ADC10SR = 0, n = ADC resolution = 10, R_S = external source resistance) $t_{Sample} = ln(2^{n+1}) \times (R_S + R_I) \times C_I + 2.5$ μ s. (ADC10SR = 1, n = ADC resolution = 10, R_S = external source resistance)

10-bit ADC, linearity parameters

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	NOM	MAX	UNIT
_	Intogral linearity arror	$1.4 \text{ V} \le (V_{eREF+} - V_{REF-}/V_{eREF-}) \text{ min} \le 1.6 \text{ V}$	2.2 V/3 V			±1	LSB
El	Integral linearity error	$1.6 \text{ V} < (V_{\text{eREF+}} - V_{\text{REF-}}/V_{\text{eREF-}}) \text{ min } \leq [V_{\text{CC}}]$	2.2 V/3 V			±1	LOD
E _D	Differential linearity error	$(V_{eREF+} - V_{REF-}/V_{eREF-})_{min} \le (V_{eREF+} - V_{REF-}/V_{eREF-})$	2.2 V/3 V			±1	LSB
E _O	Offset error	$(V_{eREF+}-V_{REF-}/V_{eREF-})_{min} \leq (V_{eREF+}-V_{REF-}/V_{eREF-}),$ Internal impedance of source $R_S < 100~\Omega,$	2.2 V/3 V		±2	±4	LSB
E _G	Gain error	$(V_{eREF+} - V_{REF-}/V_{eREF-})_{min} \le (V_{eREF+} - V_{REF-}/V_{eREF-}),$	2.2 V/3 V		±1.1	±2	LSB
E _T	Total unadjusted error	$(V_{eREF+} - V_{REF-}/V_{eREF-})_{min} \le (V_{eREF+} - V_{REF-}/V_{eREF-}),$	2.2 V/3 V		±2	±5	LSB

[‡] Not production tested, limits verified by design

MSP430x11x2, MSP430x12x2 MIXED SIGNAL MICROCONTROLLER

SLAS361D - JANUARY 2002 - REVISED AUGUST 2004

electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

10-bit ADC, temperature sensor and built-in V_{MID}

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	NOM	MAX	UNIT	
	Operating supply current into	REFON = 0, INCH = 0Ah,	2.2 V		40	120	^	
ISENSOR	V _{CC} terminal (see Note 1)	ADC10ON=NA, $T_A = 25^{\circ}C$	3 V		60	160	μΑ	
· +		ADC10ON = 1, INCH = 0Ah,	2.2 V		986	986±5%	\/	
V _{SENSOR} †		$T_A = 0$ °C	3 V		986	986±5%	mV	
TO +		ADOLOGNI A INGIL GAL	2.2 V		3.55	3.55±3%		
TC _{SENSOR} †		ADC10ON = 1, INCH = 0Ah			3.55	3.55±3%	mV/°C	
. +	Sample time required if channel	ADC10ON = 1, INCH = 0Ah,	2.2 V	30			_	
t _{SENSOR(sample)} †	10 is selected (see Note 2)	Error of conversion result ≤ 1 LSB	3 V	30			μs	
	Current into divider at channel 11	ADOLOGNI A INGLI ODI	2.2 V			NA		
IVMID	(see Note 3)	ADC10ON = 1, $INCH = 0Bh$,	3 V			NA	μΑ	
.,	V 5:1 4 1 144	ADC10ON = 1, INCH = 0Bh,	2.2 V		1.1	1.1±0.04	.,	
V _{MID}	V _{CC} divider at channel 11	V _{MID} is ~0.5 x V _{CC}			1.5	1.50±0.04	V	
	Sample time required if channel	ADC10ON = 1, INCH = 0Bh, 2.		1400			20	
t _{VMID} (sample)	11 is selected (see Note 4)	Error of conversion result ≤ 1 LSB	3 V	1220			ns	

[†] Not production tested, limits characterized

NOTES: 1. The sensor current I_{SENSOR} is consumed if (ADC10ON = 1 and REFON = 1), or (ADC10ON=1 and INCH=0Ah and sample signal is high). When REFON = 1, ISENSOR is included in IREF+. When REFON = 0, ISENSOR applies during conversion of the temperature sensor input (INCH = 0Ah).

- 2. The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time t_{SENSOR(on)}.
- 3. No additional current is needed. The V_{MID} is used during sampling.
- 4. The on-time $t_{VMID(on)}$ is included in the sampling time $t_{VMID(sample)}$; no additional on time is needed.

electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued)

Flash Memory

	PARAMETER	TEST CONDITIONS	v _{cc}	MIN	NOM	MAX	UNIT
V _{CC(PGM/} ERASE)	Program and Erase supply voltage			2.7		3.6	V
f _{FTG}	Flash Timing Generator frequency			257		476	kHz
I _{PGM}	Supply current from V _{CC} during program		2.7 V/ 3.6 V		3	5	mA
I _{ERASE}	Supply current from V _{CC} during erase		2.7 V/ 3.6 V		3	7	mA
t _{CPT}	Cumulative program time	see Note 1	2.7 V/ 3.6 V			4	ms
t _{CMErase}	Cumulative mass erase time	see Note 2	2.7 V/ 3.6 V	200			ms
	Program/Erase endurance			10 ⁴	10 ⁵		cycles
t _{Retention}	Data retention duration	T _J = 25°C		100			years
t _{Word}	Word or byte program time				35		
t _{Block, 0}	Block program time for 1st byte or word				30		
t _{Block, 1-63}	Block program time for each additional byte or word	ana Nata O			21		
t _{Block} , End	Block program end-sequence wait time	see Note 3			6		t _{FTG}
t _{Mass Erase}	Mass erase time				5297		
t _{Seg Erase}	Segment erase time				4819		

- NOTES: 1. The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming methods: individual word/byte write and block write modes.
 - 2. The mass erase duration generated by the flash timing generator is at least 11.1ms (= 5297x1/f_{FTG},max = 5297x1/476kHz). To achieve the required cumulative mass erase time the Flash Controller's mass erase operation can be repeated until this time is met. (A worst case minimum of 19 cycles are required).
 - 3. These values are hardwired into the Flash Controller's state machine; $t_{FTG} = 1/f_{FTG}$.

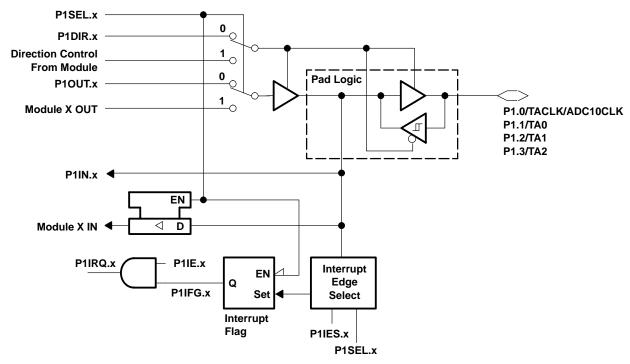
JTAG Interface

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	NOM	MAX	UNIT
,	TCK input frequency	see Note 1	2.2 V	0		5	MHz
f _{TCK}			3 V	0		10	MHz
R _{Internal}	Internal pull-down resistance on TEST	see Note 2	2.2 V/ 3 V	25	60	90	kΩ

NOTES: 1. f_{TCK} may be restricted to meet the timing requirements of the module selected.

2. TEST pull-down resistor implemented in all Flash versions.

JTAG Fuse (see Note 1)

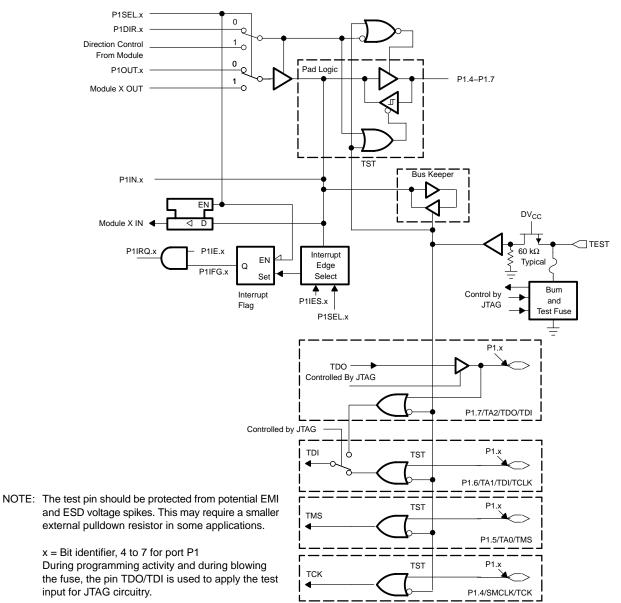

	PARAMETER	TEST CONDITIONS	V _{CC}	MIN	NOM	MAX	UNIT
V _{CC(FB)}	Supply voltage during fuse-blow condition	T _A = 25°C		2.5			V
V_{FB}	Voltage level on TEST for fuse-blow			6		7	V
I _{FB}	Supply current into TEST during fuse blow					100	mA
t _{FB}	Time to blow fuse					1	ms

NOTES: 1. Once the fuse is blown, no further access to the MSP430 JTAG/Test and emulation features is possible. The JTAG block is switched to bypass mode.

input/output schematic

Port P1, P1.0 to P1.3, input/output with Schmitt-trigger

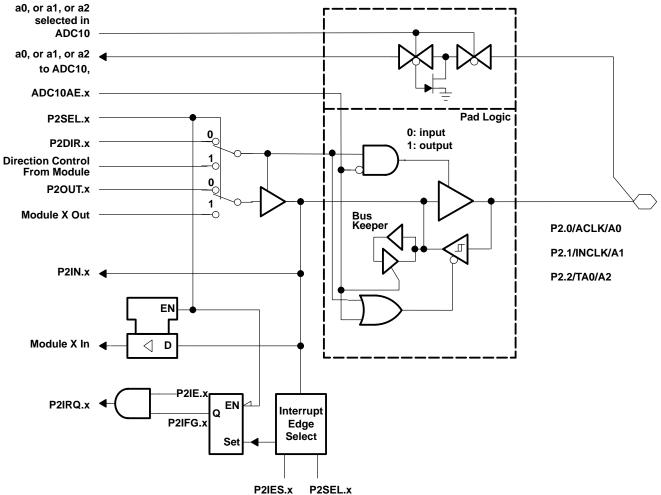
NOTE: x = Bit/identifier, 0 to 3 for port P1


PnSel.x	PnDIR.x	DIRECTION CONTROL FROM MODULE	PnOUT.x	MODULE X OUT	PnIN.x	MODULE X IN	PnIE.x	PnIFG.x	PnIES.x
P1Sel.0	P1DIR.0	P1DIR.0	P1OUT.0	ADC10CLK	P1IN.0	TACLK [†]	P1IE.0	P1IFG.0	P1IES.0
P1Sel.1	P1DIR.1	P1DIR.1	P1OUT.1	Out0 signal [†]	P1IN.1	CCI0A [†]	P1IE.1	P1IFG.1	P1IES.1
P1Sel.2	P1DIR.2	P1DIR.2	P1OUT.2	Out1 signal [†]	P1IN.2	CCI1A [†]	P1IE.2	P1IFG.2	P1IES.2
P1Sel.3	P1DIR.3	P1DIR.3	P1OUT.3	Out2 signal [†]	P1IN.3	CCI2A [†]	P1IE.3	P1IFG.3	P1IES.3

[†] Signal from or to Timer_A

input/output schematic (continued)

Port P1, P1.4 to P1.7, input/output with Schmitt-trigger and in-system access features

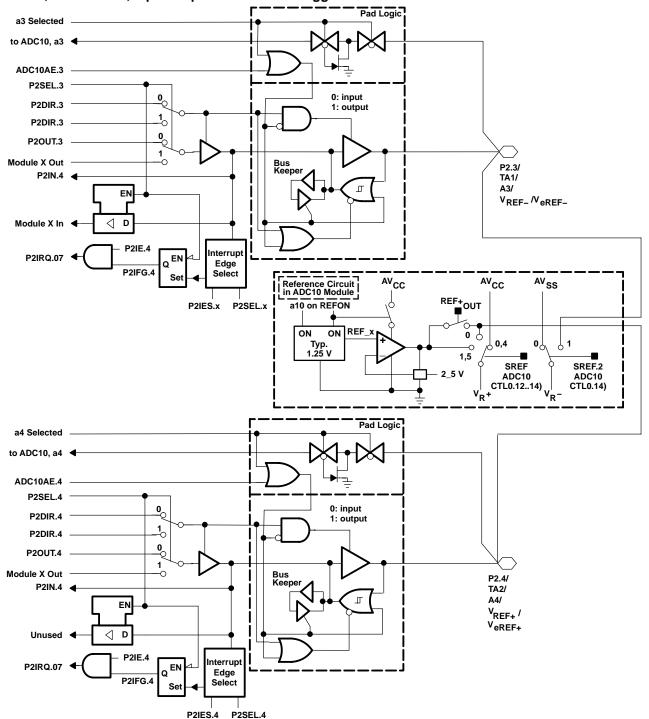

PnSel.x	PnDIR.x	DIRECTION CONTROL FROM MODULE	PnOUT.x	MODULE X OUT	PnIN.x	MODULE X IN	PnIE.x	PnIFG.x	PnIES.x
P1Sel.4	P1DIR.4	P1DIR.4	P1OUT.4	SMCLK	P1IN.4	unused	P1IE.4	P1IFG.4	P1IES.4
P1Sel.5	P1DIR.5	P1DIR.5	P1OUT.5	Out0 signal [†]	P1IN.5	unused	P1IE.5	P1IFG.5	P1IES.5
P1Sel.6	P1DIR.6	P1DIR.6	P1OUT.6	Out1 signal [†]	P1IN.6	unused	P1IE.6	P1IFG.6	P1IES.6
P1Sel.7	P1DIR.7	P1DIR.7	P1OUT.7	Out2 signal [†]	P1IN.7	unused	P1IE.7	P1IFG.7	P1IES.7

[†] Signal from or to Timer_A

input/output schematic (continued)

Port P2, P2.0 to P2.2, input/output with Schmitt-trigger

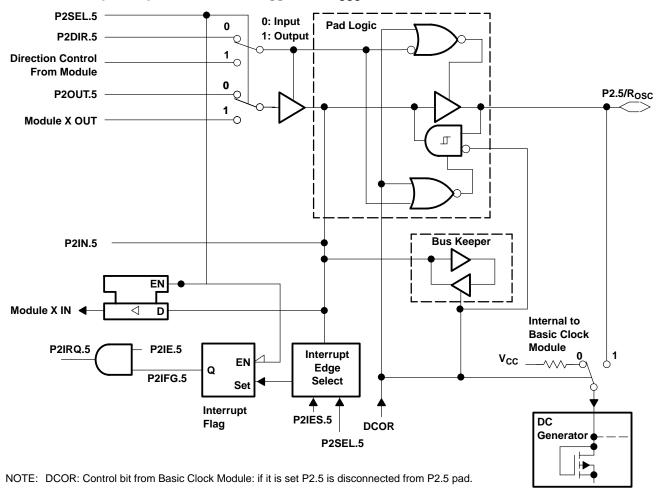
NOTE: $0 \le x \le 2$


PnSel.x	PnDIR.x	DIRECTION CONTROL FROM MODULE	PnOUT.x	MODULE X OUT	PnIN.x	MODULE X IN	PnIE.x	PnIFG.x	PnIES.x
P2Sel.0	P2DIR.0	P2DIR.0	P2OUT.0	ACLK [†]	P2IN.0	unused	P2IE.0	P2IFG.0	P1IES.0
P2Sel.1	P2DIR.1	P2DIR.1	P2OUT.1	V_{SS}	P2IN.1	INCLK [†]	P2IE.1	P2IFG.1	P1IES.1
P2Sel.2	P2DIR.2	P2DIR.2	P2OUT.2	OUT0 signal [†]	P2IN.2	CCI0B†	P2IE.2	P2IFG.2	P1IES.2

[†] Timer_A

input/output schematic (continued)

Port P2, P2.3 to P2.4, input/output with Schmitt-trigger

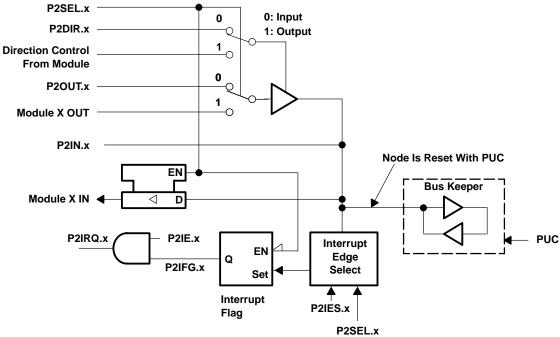

Port P2, P2.3 to P2.4, input/output with Schmitt-trigger (continued)

PnSel.x	PnDIR.x	DIRECTION CONTROL FROM MODULE	PnOUT.x	MODULE X OUT	PnIN.x	MODULE X IN	PnIE.x	PnIFG.x	PnIES.x
P2Sel.3	P2DIR.3	P2DIR.3	P2OUT.3	Out1 signal [†]	P2IN.3	CCI1B [†]	P2IE.3	P2IFG.3	P1IES.3
P2Sel.4	P2DIR.4	P2DIR.4	P2OUT.4	Out2 signal [†]	P2IN.4	Unused	P2IE.4	P2IFG.4	P1IES.4

[†] Timer_A

input/output schematic (continued)

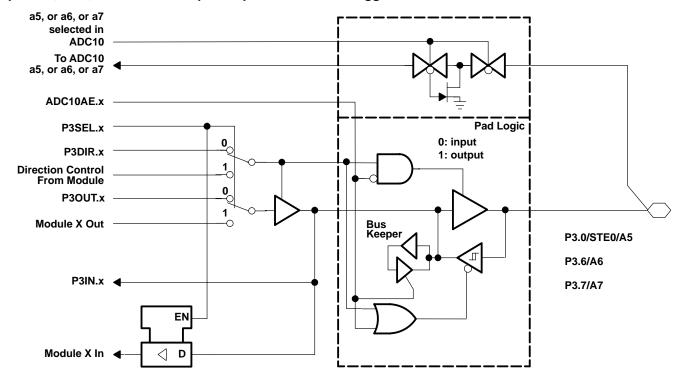
Port P2, P2.5, input/output with Schmitt-trigger and R_{OSC} function for the Basic Clock Module



PnSel.x	PnDIR.x	DIRECTION CONTROL FROM MODULE	PnOUT.x	MODULE X OUT	PnIN.x	MODULE X IN	PnIE.x	PnIFG.x	PnIES.x
P2Sel.5	P2DIR.5	P2DIR.5	P2OUT.5	V_{SS}	P2IN.5	unused	P2IE.5	P2IFG.5	P2IES.5

input/output schematic (continued)

Port P2, unbonded bits P2.6 and P2.7


NOTE: x = Bit/identifier, 6 to 7 for port P2 without external pins

P2Sel.x	P2DIR.x	DIRECTION CONTROL FROM MODULE	P2OUT.x	MODULE X OUT	P2IN.x	MODULE X IN	P2IE.x	P2IFG.x	P2IES.x
P2Sel.6	P2DIR.6	P2DIR.6	P2OUT.6	V _{SS}	P2IN.6	unused	P2IE.6	P2IFG.6	P2IES.6
P2Sel.7	P2DIR.7	P2DIR.7	P2OUT.7	V_{SS}	P2IN.7	unused	P2IE.7	P2IFG.7	P2IES.7

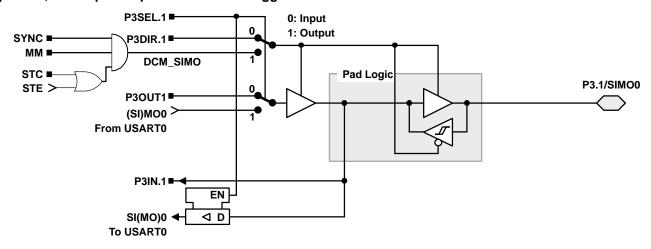
NOTE: Unbonded bits 6 and 7 of port P2 can be used as interrupt flags. Only software can affect the interrupt flags. They work as software interrupts.

input/output schematic (continued)

port P3, P3.0, P3.6 and P3.7 input/output with Schmitt-trigger

NOTE: x (0,6,7)

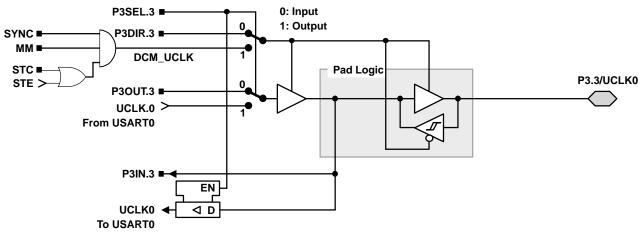
PnSel.x	PnDIR.x	Direction Control From Module	PnOUT.x	Module X OUT	PnIN.x	Module X IN
P3Sel.0	P3DIR.0	V_{SS}	P3OUT.0	V_{SS}	P3IN.0	STE0 [†]
P3Sel.6	P3DIR.1	P3DIR.6	P3OUT.6	V_{SS}	P3IN.6	Unused
P3Sel.7	P3DIR.2	P3DIR.7	P3OUT.7	V_{SS}	P3IN.7	Unused


[†] USART0

APPLICATION INFORMATION

input/output schematic (continued)

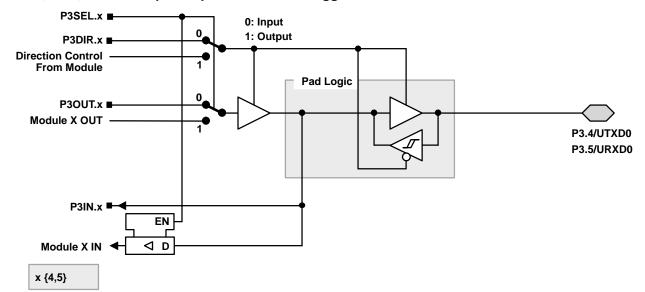
port P3, P3.1 input/output with Schmitt-trigger


port P3, P3.2, input/output with Schmitt-trigger

APPLICATION INFORMATION

input/output schematic (continued)

port P3, P3.3, input/output with Schmitt-trigger



NOTE: UART mode: The UART clock can only be an input. If UART mode and UART function are selected, the P3.3/UCLK0 is always

SPI, slave mode: The clock applied to UCLK0 is used to shift data in and out.

SPI, master mode: The clock to shift data in and out is supplied to connected devices on pin P3.3/UCLK0 (in slave mode).

port P3, P3.4, and P3.5 input/output with Schmitt-trigger

PnSel.x	PnDIR.x	DIRECTION CONTROL FROM MODULE	PnOUT.x	MODULE X OUT	PnIN.x	MODULE X IN
P3Sel.4	P3DIR.4	V _{CC}	P3OUT.4	UTXD0 [†]	P3IN.4	Unused
P3Sel.5	P3DIR.5	V_{SS}	P3OUT.5	V_{SS}	P3IN.5	URXD0 [‡]

[†] Output from USART0 module

[‡] Input to USART0 module

APPLICATION INFORMATION

JTAG fuse check mode

MSP430 devices that have the fuse on the TEST terminal have a fuse check mode that tests the continuity of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check current, I_{TF} , of 1 mA at 3 V, 2.5 mA at 5 V can flow from the TEST pin to ground if the fuse is not burned. Care must be taken to avoid accidentally activating the fuse check mode and increasing overall system power consumption.

When the TEST pin is taken back low after a test or programming session, the fuse check mode and sense currents are terminated.

Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse check mode has the potential to be activated.

The fuse check current will only flow when the fuse check mode is active and the TMS pin is in a low state (see Figure 10). Therefore, the additional current flow can be prevented by holding the TMS pin high (default condition).

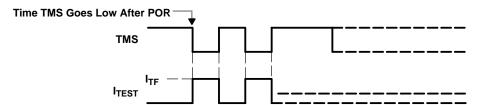
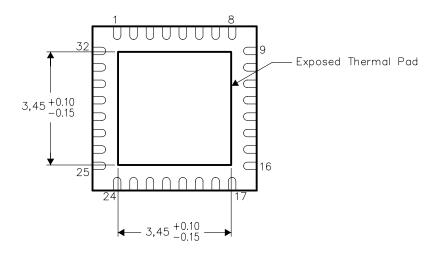


Figure 10. Fuse Check Mode Current, MSP430F11x2, MSP430F12x2 NOTE:

The CODE and RAM data protection is ensured if the JTAG fuse is blown and the 256-bit bootloader access key is used. Also, see the *bootstrap loader* section for more information.



THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB), the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to a ground plane or special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, Quad Flatpack No—Lead Logic Packages, Texas Instruments Literature No. SCBA017. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View

NOTE: All linear dimensions are in millimeters

Exposed Thermal Pad Dimensions

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
MSP430A019IRHBR	ACTIVE	QFN	RHB	32	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430A019IRHBT	ACTIVE	QFN	RHB	32	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F1122IDW	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F1122IDWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F1122IPW	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F1122IPWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F1122IRHBR	ACTIVE	QFN	RHB	32	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F1122IRHBT	ACTIVE	QFN	RHB	32	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F1132IDW	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F1132IDWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F1132IPW	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F1132IPWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F1132IRHBR	ACTIVE	QFN	RHB	32	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F1132IRHBT	ACTIVE	QFN	RHB	32	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F1222IDW	ACTIVE	SOIC	DW	28	20	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F1222IDWR	ACTIVE	SOIC	DW	28	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F1222IPW	ACTIVE	TSSOP	PW	28	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F1222IPWR	ACTIVE	TSSOP	PW	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F1222IRHBR	ACTIVE	QFN	RHB	32	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F1222IRHBT	ACTIVE	QFN	RHB	32	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F1232IDW	ACTIVE	SOIC	DW	28	20	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F1232IDWR	ACTIVE	SOIC	DW	28	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F1232IPW	ACTIVE	TSSOP	PW	28	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F1232IPWR	ACTIVE	TSSOP	PW	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F1232IRHBR	ACTIVE	QFN	RHB	32	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR

PACKAGE OPTION ADDENDUM

22-Mar-2007

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins Pa	ackage Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
MSP430F1232IRHBT	ACTIVE	QFN	RHB	32	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

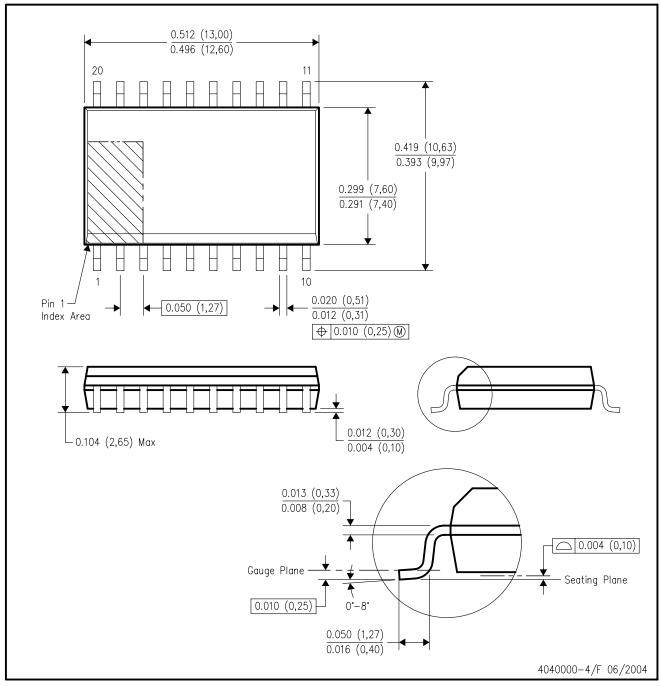
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

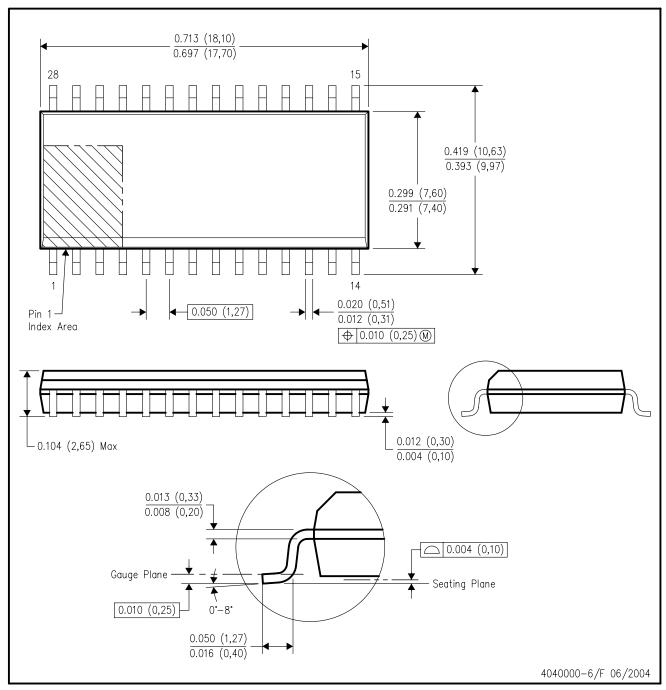

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

DW (R-PDSO-G20)

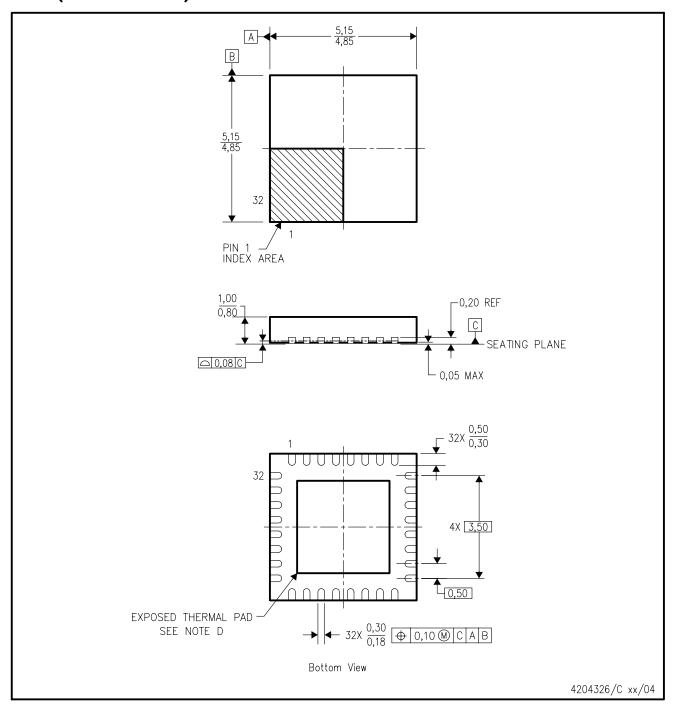
PLASTIC SMALL-OUTLINE PACKAGE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AC.

DW (R-PDSO-G28)

PLASTIC SMALL-OUTLINE PACKAGE



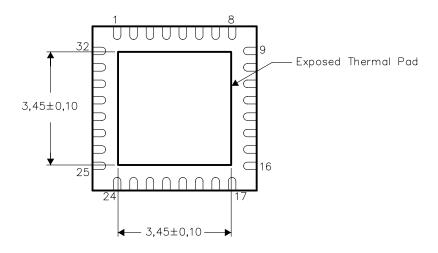
- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AE.

RHB (S-PQFP-N32)

PLASTIC QUAD FLATPACK

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) Package configuration.
- D The Package thermal pad must be soldered to the board for thermal and mechanical performance. See product data sheet for details regarding the exposed thermal pad dimensions.
- E. Falls within JEDEC MO-220.

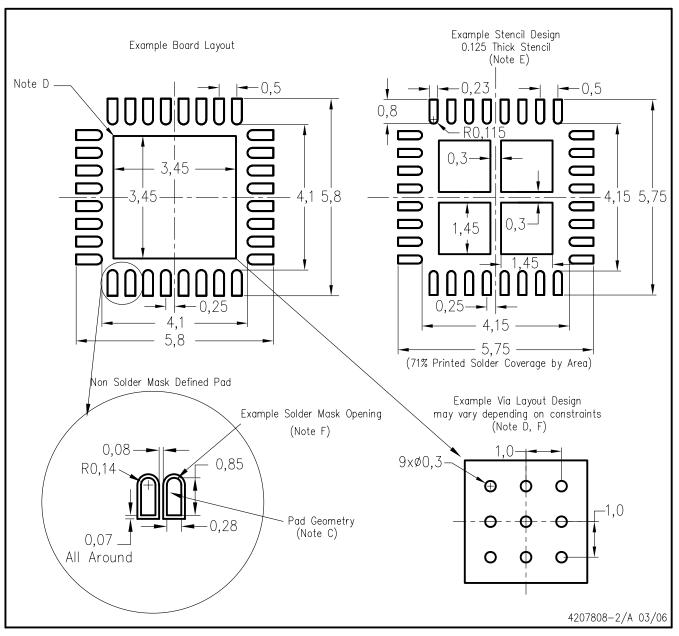


THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to a ground or power plane (whichever is applicable), or alternatively, a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, Quad Flatpack No—Lead Logic Packages, Texas Instruments Literature No. SCBA017. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.



Bottom View

NOTE: All linear dimensions are in millimeters

Exposed Thermal Pad Dimensions

RHB (S-PQFP-N32)

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack Packages, Texas Instruments Literature No. SCBA017, SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com>.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad.

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

	Applications	
amplifier.ti.com	Audio	www.ti.com/audio
dataconverter.ti.com	Automotive	www.ti.com/automotive
dsp.ti.com	Broadband	www.ti.com/broadband
interface.ti.com	Digital Control	www.ti.com/digitalcontrol
logic.ti.com	Military	www.ti.com/military
power.ti.com	Optical Networking	www.ti.com/opticalnetwork
microcontroller.ti.com	Security	www.ti.com/security
www.ti.com/lpw	Telephony	www.ti.com/telephony
	Video & Imaging	www.ti.com/video
	Wireless	www.ti.com/wireless
	dataconverter.ti.com dsp.ti.com interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com	amplifier.ti.com dataconverter.ti.com dsp.ti.com dsp.ti.com interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com www.ti.com/lpw Audio Audio Audio Audio Automotive Broadband Digital Control Military Optical Networking Security Telephony Video & Imaging

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

	Applications	
amplifier.ti.com	Audio	www.ti.com/audio
dataconverter.ti.com	Automotive	www.ti.com/automotive
dsp.ti.com	Broadband	www.ti.com/broadband
interface.ti.com	Digital Control	www.ti.com/digitalcontrol
logic.ti.com	Military	www.ti.com/military
power.ti.com	Optical Networking	www.ti.com/opticalnetwork
microcontroller.ti.com	Security	www.ti.com/security
www.ti.com/lpw	Telephony	www.ti.com/telephony
	Video & Imaging	www.ti.com/video
	Wireless	www.ti.com/wireless
	dataconverter.ti.com dsp.ti.com interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com	amplifier.ti.com dataconverter.ti.com dsp.ti.com dsp.ti.com interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com www.ti.com/lpw Audio Audio Audio Audio Automotive Broadband Digital Control Military Optical Networking Security Telephony Video & Imaging

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

	Applications	
amplifier.ti.com	Audio	www.ti.com/audio
dataconverter.ti.com	Automotive	www.ti.com/automotive
dsp.ti.com	Broadband	www.ti.com/broadband
interface.ti.com	Digital Control	www.ti.com/digitalcontrol
logic.ti.com	Military	www.ti.com/military
power.ti.com	Optical Networking	www.ti.com/opticalnetwork
microcontroller.ti.com	Security	www.ti.com/security
www.ti.com/lpw	Telephony	www.ti.com/telephony
	Video & Imaging	www.ti.com/video
	Wireless	www.ti.com/wireless
	dataconverter.ti.com dsp.ti.com interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com	amplifier.ti.com dataconverter.ti.com dsp.ti.com dsp.ti.com interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com www.ti.com/lpw Audio Audio Audio Audio Automotive Broadband Digital Control Military Optical Networking Security Telephony Video & Imaging

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

	Applications	
amplifier.ti.com	Audio	www.ti.com/audio
dataconverter.ti.com	Automotive	www.ti.com/automotive
dsp.ti.com	Broadband	www.ti.com/broadband
interface.ti.com	Digital Control	www.ti.com/digitalcontrol
logic.ti.com	Military	www.ti.com/military
power.ti.com	Optical Networking	www.ti.com/opticalnetwork
microcontroller.ti.com	Security	www.ti.com/security
www.ti.com/lpw	Telephony	www.ti.com/telephony
	Video & Imaging	www.ti.com/video
	Wireless	www.ti.com/wireless
	dataconverter.ti.com dsp.ti.com interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com	amplifier.ti.com dataconverter.ti.com dsp.ti.com dsp.ti.com interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com www.ti.com/lpw Audio Audio Audio Audio Automotive Broadband Digital Control Military Optical Networking Security Telephony Video & Imaging

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

	Applications	
amplifier.ti.com	Audio	www.ti.com/audio
dataconverter.ti.com	Automotive	www.ti.com/automotive
dsp.ti.com	Broadband	www.ti.com/broadband
interface.ti.com	Digital Control	www.ti.com/digitalcontrol
logic.ti.com	Military	www.ti.com/military
power.ti.com	Optical Networking	www.ti.com/opticalnetwork
microcontroller.ti.com	Security	www.ti.com/security
www.ti.com/lpw	Telephony	www.ti.com/telephony
	Video & Imaging	www.ti.com/video
	Wireless	www.ti.com/wireless
	dataconverter.ti.com dsp.ti.com interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com	amplifier.ti.com dataconverter.ti.com dsp.ti.com dsp.ti.com interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com www.ti.com/lpw Audio Audio Audio Audio Automotive Broadband Digital Control Military Optical Networking Security Telephony Video & Imaging

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

	Applications	
amplifier.ti.com	Audio	www.ti.com/audio
dataconverter.ti.com	Automotive	www.ti.com/automotive
dsp.ti.com	Broadband	www.ti.com/broadband
interface.ti.com	Digital Control	www.ti.com/digitalcontrol
logic.ti.com	Military	www.ti.com/military
power.ti.com	Optical Networking	www.ti.com/opticalnetwork
microcontroller.ti.com	Security	www.ti.com/security
www.ti.com/lpw	Telephony	www.ti.com/telephony
	Video & Imaging	www.ti.com/video
	Wireless	www.ti.com/wireless
	dataconverter.ti.com dsp.ti.com interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com	amplifier.ti.com dataconverter.ti.com dsp.ti.com dsp.ti.com interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com www.ti.com/lpw Audio Audio Audio Audio Automotive Broadband Digital Control Military Optical Networking Security Telephony Video & Imaging

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

	Applications	
amplifier.ti.com	Audio	www.ti.com/audio
dataconverter.ti.com	Automotive	www.ti.com/automotive
dsp.ti.com	Broadband	www.ti.com/broadband
interface.ti.com	Digital Control	www.ti.com/digitalcontrol
logic.ti.com	Military	www.ti.com/military
power.ti.com	Optical Networking	www.ti.com/opticalnetwork
microcontroller.ti.com	Security	www.ti.com/security
www.ti.com/lpw	Telephony	www.ti.com/telephony
	Video & Imaging	www.ti.com/video
	Wireless	www.ti.com/wireless
	dataconverter.ti.com dsp.ti.com interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com	amplifier.ti.com dataconverter.ti.com dsp.ti.com dsp.ti.com interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com www.ti.com/lpw Audio Audio Audio Audio Automotive Broadband Digital Control Military Optical Networking Security Telephony Video & Imaging

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
MSP430A019IRHBR	ACTIVE	QFN	RHB	32	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430A019IRHBT	ACTIVE	QFN	RHB	32	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F1122IDW	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F1122IDWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F1122IPW	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F1122IPWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F1122IRHBR	ACTIVE	QFN	RHB	32	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F1122IRHBT	ACTIVE	QFN	RHB	32	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F1132IDW	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F1132IDWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F1132IPW	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F1132IPWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F1132IRHBR	ACTIVE	QFN	RHB	32	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F1132IRHBT	ACTIVE	QFN	RHB	32	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F1222IDW	ACTIVE	SOIC	DW	28	20	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F1222IDWR	ACTIVE	SOIC	DW	28	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F1222IPW	ACTIVE	TSSOP	PW	28	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F1222IPWR	ACTIVE	TSSOP	PW	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F1222IRHBR	ACTIVE	QFN	RHB	32	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F1222IRHBT	ACTIVE	QFN	RHB	32	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
MSP430F1232IDW	ACTIVE	SOIC	DW	28	20	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F1232IDWR	ACTIVE	SOIC	DW	28	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F1232IPW	ACTIVE	TSSOP	PW	28	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F1232IPWR	ACTIVE	TSSOP	PW	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
MSP430F1232IRHBR	ACTIVE	QFN	RHB	32	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR

PACKAGE OPTION ADDENDUM

22-Mar-2007

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins Pa	ackage Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
MSP430F1232IRHBT	ACTIVE	QFN	RHB	32	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

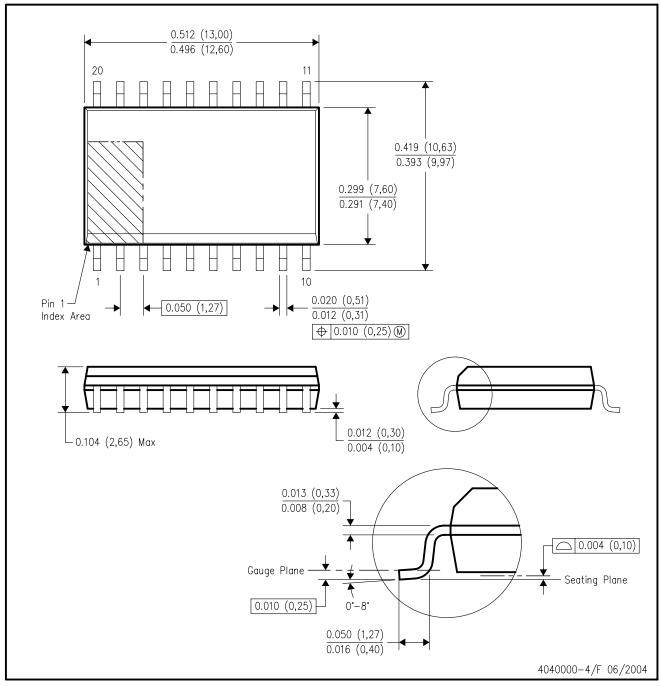
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

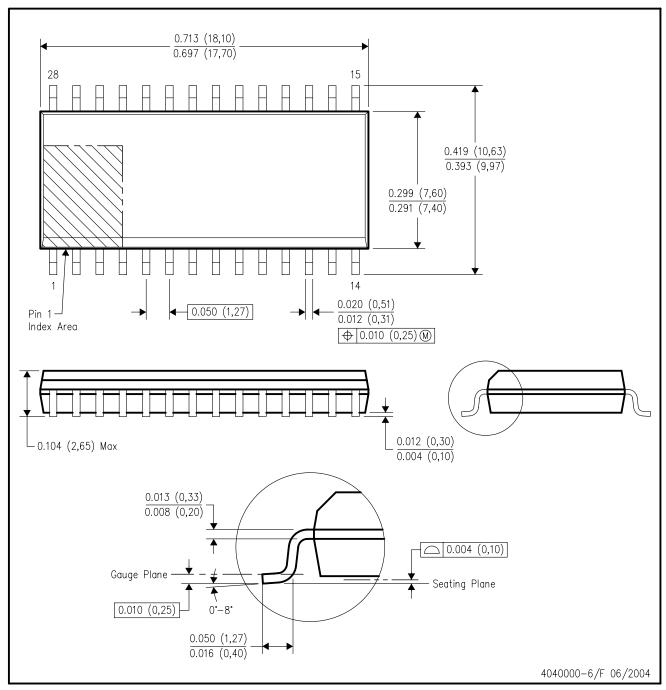

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

DW (R-PDSO-G20)

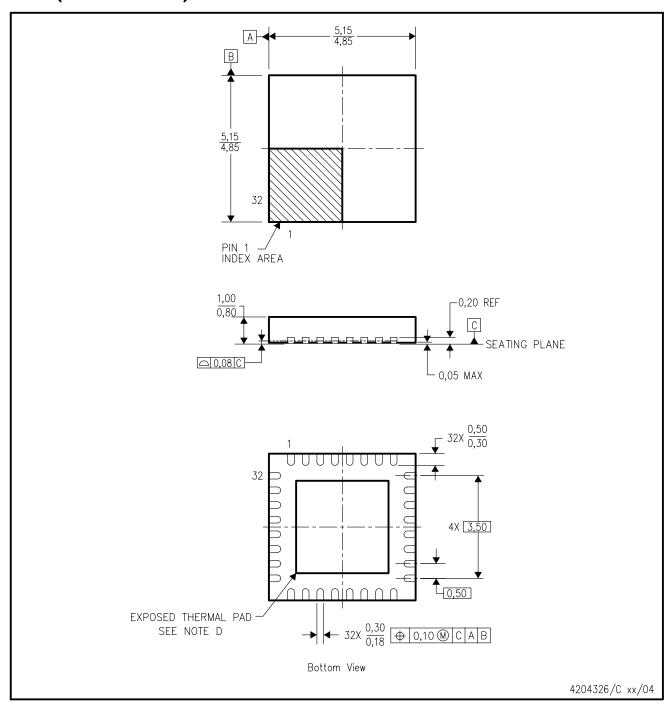
PLASTIC SMALL-OUTLINE PACKAGE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AC.

DW (R-PDSO-G28)

PLASTIC SMALL-OUTLINE PACKAGE



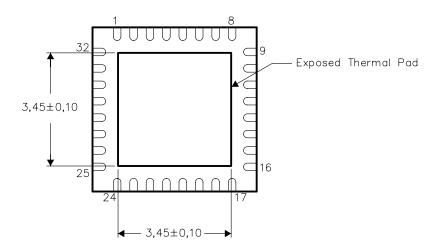
- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AE.

RHB (S-PQFP-N32)

PLASTIC QUAD FLATPACK

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) Package configuration.
- D The Package thermal pad must be soldered to the board for thermal and mechanical performance. See product data sheet for details regarding the exposed thermal pad dimensions.
- E. Falls within JEDEC MO-220.

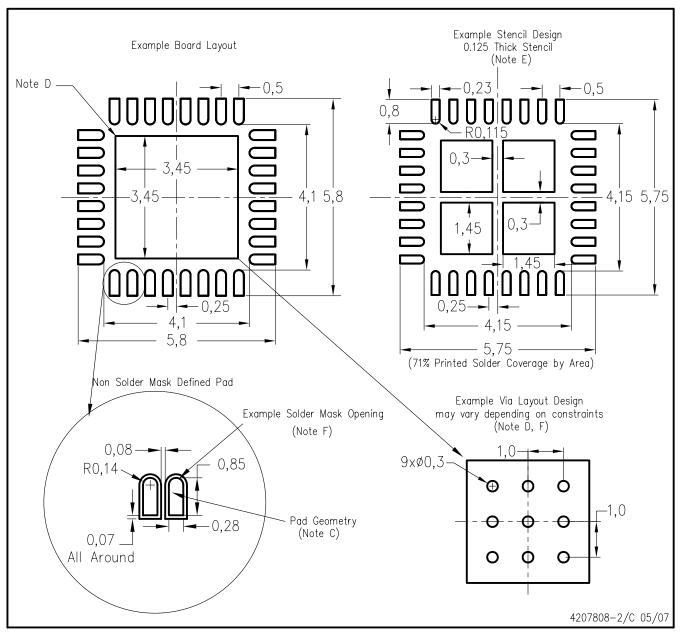


THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to a ground or power plane (whichever is applicable), or alternatively, a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, Quad Flatpack No—Lead Logic Packages, Texas Instruments Literature No. SCBA017. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

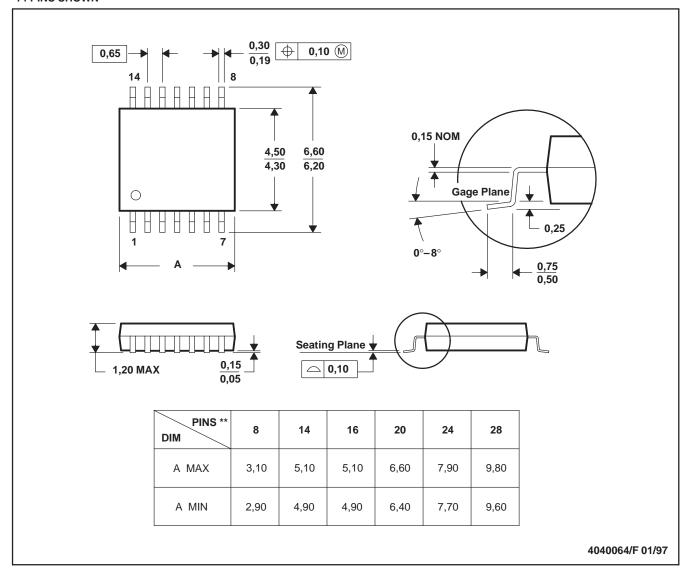


Bottom View

NOTE: All linear dimensions are in millimeters

Exposed Thermal Pad Dimensions

RHB (S-PQFP-N32)


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack Packages, Texas Instruments Literature No. SCBA017, SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com>.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad.

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Telephony	www.ti.com/telephony
Low Power Wireless	www.ti.com/lpw	Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless
Wireless		Wireless	www.ti.com/wireless