

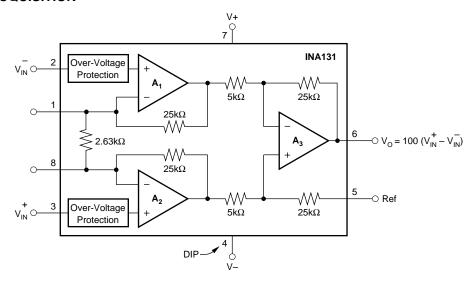
INA131

Precision G = 100 INSTRUMENTATION AMPLIFIER

FEATURES

- LOW OFFSET VOLTAGE: 50µV max
- LOW DRIFT: 0.25µV/°C max
- LOW INPUT BIAS CURRENT: 2nA max
- HIGH COMMON-MODE REJECTION: 110dB min
- INPUT OVERVOLTAGE PROTECTION: +40V
- WIDE SUPPLY RANGE: ±2.25 to ±18V
- LOW QUIESCENT CURRENT: 3mA
- 8-PIN PLASTIC DIP

APPLICATIONS


- BRIDGE AMPLIFIER
- THERMOCOUPLE AMPLIFIER
- RTD SENSOR AMPLIFIER
- MEDICAL INSTRUMENTATION
- DATA ACQUISITION

DESCRIPTION

The INA131 is a low cost, general purpose G = 100 instrumentation amplifier offering excellent accuracy. Its 3-op amp design and small size make it ideal for a wide range of applications.

On-chip laser trimmed resistors accurately set a fixed gain of 100. The INA131 is laser trimmed to achieve very low offset voltage (50 μ V max), drift (0.25 μ V/°C max), and high CMR (110dB min). Internal input protection can withstand up to ± 40 V inputs without damage.

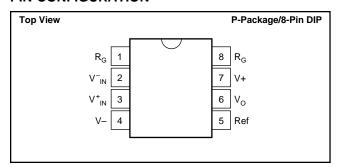
The INA131 is available in a 8-pin plastic DIP. They are specified over the -40°C to +85°C temperature range.

International Airport Industrial Park • Mailing Address: PO Box 11400, Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 • Tel: (520) 746-1111 • Twx: 910-952-1111 Internet: http://www.burr-brown.com/ • FAXLine: (800) 548-6133 (US/Canada Only) • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

At T_A = +25°C, V_S = ±15V, R_L = 2k Ω , unless otherwise noted.

		INA131BP		INA131AP				
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
INPUT Offset Voltage, RTI Initial vs Temperature vs Power Supply Long-Term Stability Impedance, Differential Common-Mode Input Common-Mode Range Safe Input Voltage Common-Mode Rejection	$T_A = +25^{\circ}\text{C}$ $T_A = T_{\text{MIN}} \text{ to } T_{\text{MAX}}$ $V_S = \pm 2.25 \text{V to } \pm 18 \text{V}$ $V_{\text{CM}} = \pm 10 \text{V}, \ \Delta R_S = 1 \text{k}\Omega$	±11	±10 ±0.1 0.5 0.2 10 ¹⁰ 6 10 ¹⁰ 6 ±13.5	±50 ±0.25 3	* 106	±25 ±0.25 * * * *	±125 ±1 *	μV μV/°C μV/V μV/mo Ω pF Ω pF V V
BIAS CURRENT vs Temperature	Civi , S		±0.5 ±8	±2		*	±5	nA pA/°C
OFFSET CURRENT vs Temperature			±0.5 ±8	±2		*	±5	nA pA/°C
NOISE VOLTAGE, RTI $f = 10Hz$ $f = 100Hz$ $f = 10Hz$ $f = 10kHz$ $f = 10kHz$ $f_B = 0.1Hz \text{ to } 10Hz$ Noise Current $f = 10Hz$ $f = 10Hz$ $f = 10Hz$ $f = 0.1Hz \text{ to } 100Hz$	$R_S = 0\Omega$		16 12 12 12 0.4 0.4 0.2 18			***		nV/√Hz nV/√Hz nV/√Hz nV/√Hz μVp-p pA/√Hz pA/√Hz pAp-p
GAIN Gain Error ⁽¹⁾ Resistor Value ⁽²⁾			±0.01 ±10	±0.024 ±40		*	±0.1	% %
Gain vs Temperature Nonlinearity			±5 ±0.0003	±10 ±0.002		*	±20 ±0.004	ppm/°C % of FSR
OUTPUT Voltage Load Capacitance, max Short Circuit Current	$\begin{split} & I_O = 5\text{mA}, \ T_{\text{MIN}} \ \text{to} \ T_{\text{MAX}} \\ & V_{\text{S}} = \pm 11.4\text{V}, \ R_{\text{L}} = 2k\Omega \\ & V_{\text{S}} = \pm 2.25\text{V}, \ R_{\text{L}} = 2k\Omega \\ & \text{Stable Operation} \end{split}$	±13.5 ±10 ±1	±13.7 10.5 1.5 1000 +20/-15		* * *	* * * *		V V V pF mA
FREQUENCY RESPONSE Bandwidth, –3dB Slew Rate Settling Time, 0.01% Overload Recovery	$V_O = \pm 10V$ 50% Overdrive	0.3	70 0.7 100 20		*	* * *		kHz V/μs μs μs
POWER SUPPLY Voltage Range Current	V _{IN} = 0V	±2.25	±15 ±2.2	±18 ±3	*	*	*	V mA
		-40 -40	100	85 125	*	*	*	°C/W


^{*} Specification same as INA131BP.

NOTES: (1) $R_L = 10 k\Omega$. (2) Absolute value of internal gain-setting resistors. (Gain depends on resistor ratios.)

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

PIN CONFIGURATION

PACKAGE/ORDERING INFORMATION

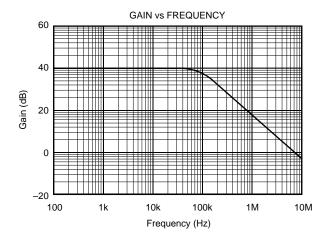
PRODUCT	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾	TEMPERATURE RANGE	
INA131AP	8-Pin Plastic DIP	006	-40°C to +85°C	
INA131BP	8-Pin Plastic DIP	006	-40°C to +85°C	

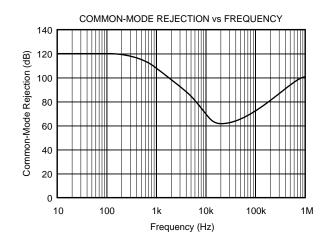
NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

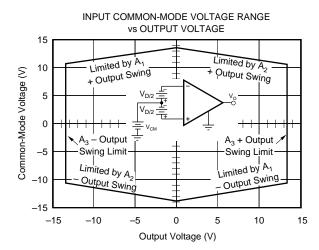
ABSOLUTE MAXIMUM RATINGS(1)

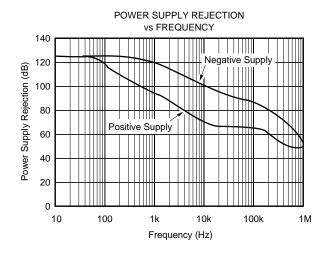
Supply Voltage	±18V
Input Voltage Range	±40V
Output Short Circuit (to ground)	Continuous
Operating Temperature	40°C to +125°C
Storage Temperature	40°C to +125°C
Junction Temperature	+150°C
Lead Temperature (soldering -10s)	+300°C

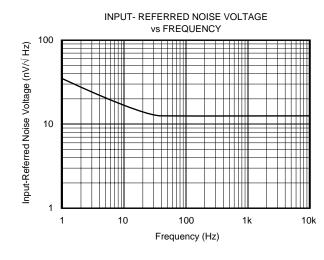
NOTE: (1) Stresses above these ratings may cause permanent damage.

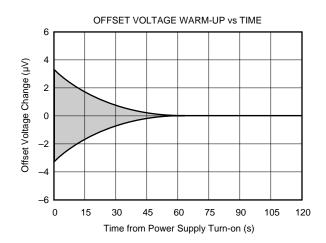

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

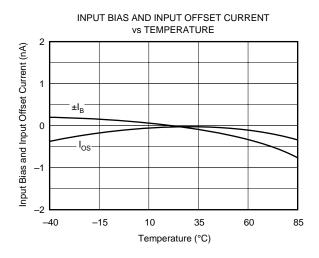

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

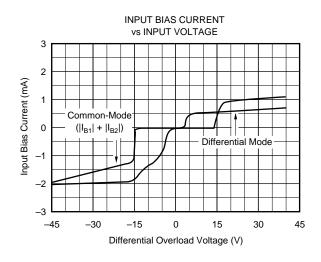

INA131

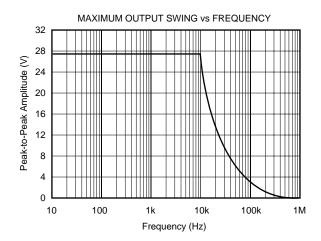

TYPICAL PERFORMANCE CURVES

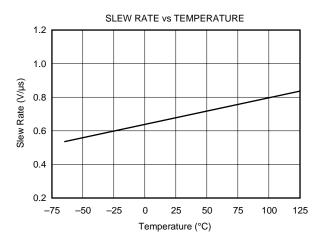

At 25°C, $V_s = \pm 15V$, unless otherwise noted.

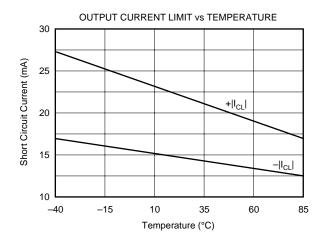


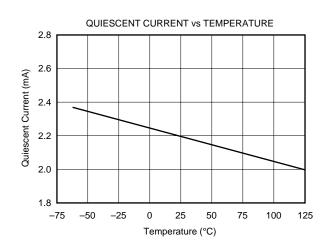


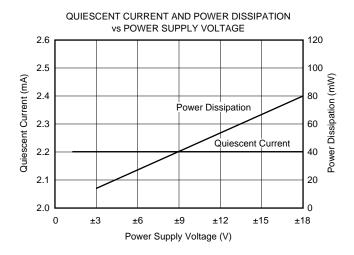


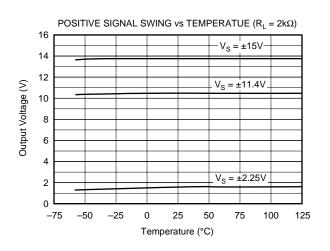


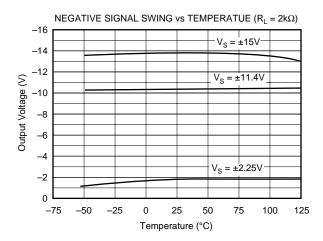

TYPICAL PERFORMANCE CURVES (CONT)

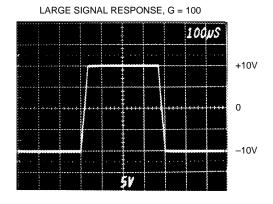

At 25°C, $V_S = \pm 15V$, unless otherwise noted.

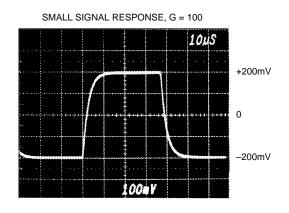


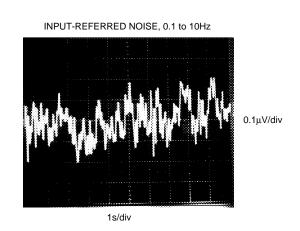







TYPICAL PERFORMANCE CURVES (CONT)


At 25°C, $V_S = \pm 15V$, unless otherwise noted.



APPLICATION INFORMATION

Figure 1 shows the basic connections required for operation of the INA131. Applications with noisy or high impedance power supplies may require decoupling capacitors close to the device pins as shown.

The output is referred to the output reference (Ref) terminal which is normally grounded. This must be a low-impedance connection to assure good common-mode rejection. A resistance of 5Ω in series with the Ref pin will cause a device with 110dB CMR to degrade to approximately 106dB CMR.

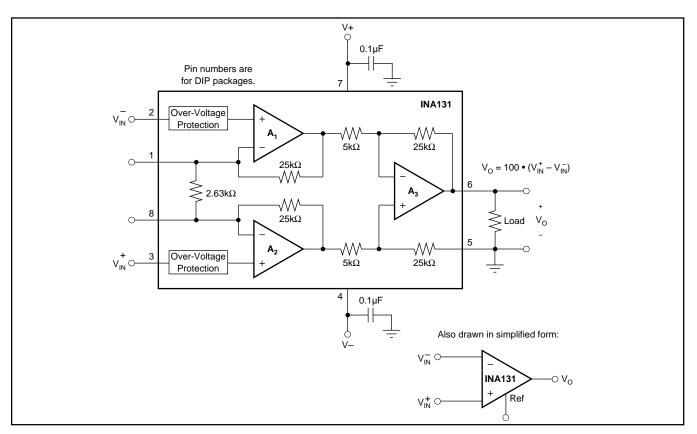
SETTING THE GAIN

No external resistors are required for G=100. On-chip laser-trimmed resistors set the gain, providing excellent gain accuracy and temperature stability. Gain is distributed between the input and output stages of the INA131. Bandwidth is increased by approximately five times (compared to the INA114 in G=100). Input common-mode range is also improved (see "Input Common-Mode Range").

Although the INA131 is primarily intended for fixed G = 100 applications, the gain can be increased by connecting an external resistor to the R_G pins. The internal resistors are trimmed for precise ratios, not to absolute values, so the influence of an external resistor will vary from device to

device. Absolute accuracy of the internal values is $\pm 40\%$. The nominal gain with an external $R_{\rm G}$ resistor can be calculated by:

$$G = 100 + \frac{250 \text{ k}\Omega}{R_G} \tag{1}$$


Where: R_G is the external gain resistor. Accuracy of the 250k Ω term is $\pm 40\%$.

The stability and temperature drift of the external gain setting resistor, R_{G_i} also affects gain. R_{G_i} 's contribution to gain accuracy and drift can be directly inferred from the gain equation (1).

NOISE PERFORMANCE

The INA131 provides very low noise in most applications. For differential source impedances less than $1k\Omega$, the INA103 may provide lower noise. For source impedances greater than $50k\Omega$, the INA111 FET-Input Instrumentation Amplifier may provide lower noise.

Low frequency noise of the INA131 is approximately $0.4\mu Vp$ -p measured from 0.1 to 10Hz. This is approximately one-tenth the noise of state-of-the-art chopper-stabilized amplifiers.

7

FIGURE 1. Basic Connections.

OFFSET TRIMMING

The INA131 is laser trimmed for very low offset voltage and drift. Most applications require no external offset adjustment. Figure 2 shows an optional circuit for trimming the output offset voltage. The voltage applied to Ref terminal is summed at the output. Low impedance must be maintained at this node to assure good common-mode rejection. This is achieved by buffering trim voltage with an op amp as shown.

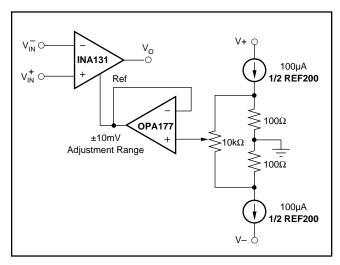


FIGURE 2. Optional Trimming of Output Offset Voltage.

INPUT BIAS CURRENT RETURN PATH

The input impedance of the INA131 is extremely high—approximately $10^{10}\Omega$. However, a path must be provided for the input bias current of both inputs. This input bias current is typically less than $\pm 1 \text{nA}$ (it can be either polarity due to cancellation circuitry). High input impedance means that this input bias current changes very little with varying input voltage.

Input circuitry must provide a path for this input bias current if the INA131 is to operate properly. Figure 3 shows various provisions for an input bias current path. Without a bias current return path, the inputs will float to a potential which exceeds the common-mode range of the INA131 and the input amplifiers will saturate. If the differential source resistance is low, bias current return path can be connected to one input (see thermocouple example in Figure 3). With higher source impedance, using two resistors provides a balanced input with possible advantages of lower input offset voltage due to bias current and better common-mode rejection.

INPUT COMMON-MODE RANGE

The linear common-mode range of the input op amps of the INA131 is approximately ± 13.75 V (or 1.25V from the power supplies). As the output voltage increases, however, the linear input range is limited by the output voltage swing of the input amplifiers, A_1 and A_2 . The 5V/V output stage gain of the INA131 reduces this effect. Compared to the

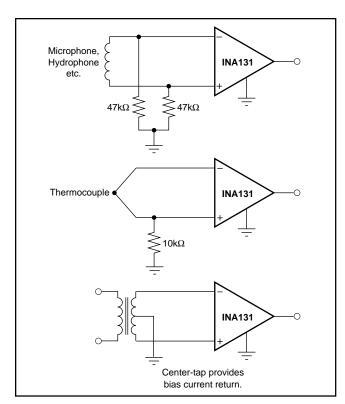


FIGURE 3. Providing an Input Common-Mode Current Path.

INA114 and other unity output gain instrumentation amplifiers, the INA131 provides several additional volts of input common-mode range with full output voltage swing. See the typical performance curve "Input Common-Mode Range vs Output Voltage".

Input-overload often produces an output voltage that appears normal. For example, an input voltage of +20V on one input and +40V on the other input will obviously exceed the linear common-mode range of both input amplifiers. Since both input amplifiers are saturated to the nearly the same output voltage limit, the difference voltage measured by the output amplifier will be near zero. The output of the INA131 will be near 0V even though both inputs are overloaded.

INPUT PROTECTION

The inputs of the INA131 are individually protected for voltages up to ±40V. For example, a condition of –40V on one input and +40V on the other input will not cause damage. Internal circuitry on each input provides low series impedance under normal signal conditions. To provide equivalent protection, series input resistors would contribute excessive noise. If the input is overloaded, the protection circuitry limits the input current to a safe value (approximately 1.5mA). The typical performance curve "Input Bias Current vs Input Voltage" shows this input current limit behavior. The inputs are protected even if no power supply voltage is present.

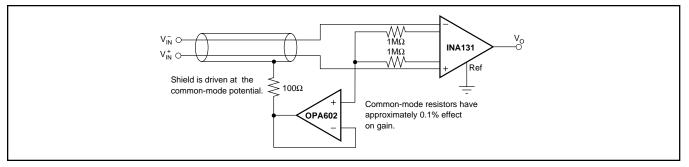


FIGURE 4. Shield Driver Circuit.

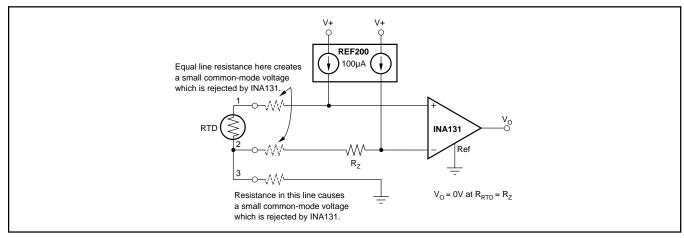
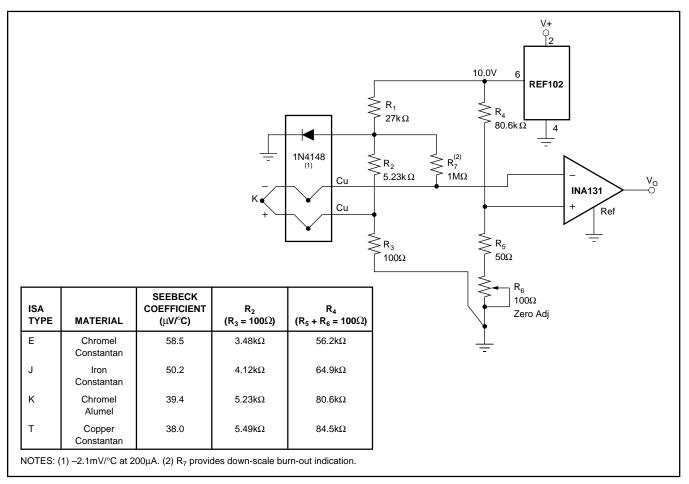



FIGURE 5. RTD Temperature Measurement Circuit.

9

FIGURE 6. Thermocouple Amplifier with Cold Junction Compensation.

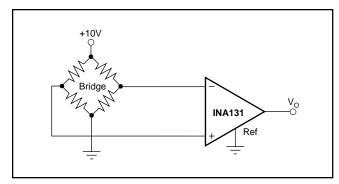


FIGURE 7. Bridge Transducer Amplifier.

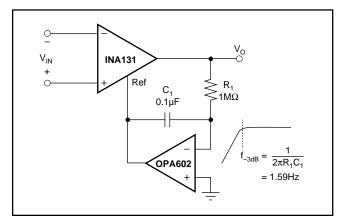


FIGURE 8. AC-Coupled Instrumentation Amplifier.

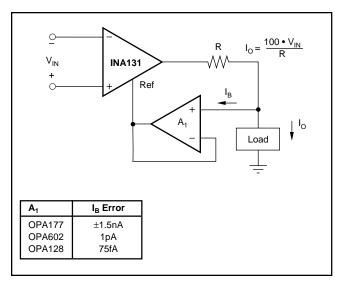


FIGURE 9. Differential Voltage to Current Converter.

com 10-Aug-2006

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
INA131AP	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type
INA131APG4	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type
INA131BP	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type
INA131BPG4	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated