

### **FEATURES**

- 12 parallel channel GPS receiver
- 4000 simultaneous time-frequency search bins
- SBAS (WAAS, EGNOS) support
- -137dBm acquisition sensitivity
- -145dBm tracking sensitivity
- < 10 second hot start</p>
- < 45 second cold start</li>
- 5m CEP accuracy

# LS-40EB

# Fast Acquisition Enhanced Sensitivity 12 Channel GPS Sensor Module

The LS-40EB module is a small, single-board, 12 parallel-channel receiver intended for Original Equipment Manufacturer (OEM) products.

The receiver continuously tracks all satellites in view and provides accurate satellite positioning data. The LS-40EB is optimized for applications requiring good performance, low cost, and maximum flexibility; suitable for a wide range of OEM configurations including handhelds, asset tracking, marine and vehicle navigation products.

Its 12 parallel channels and 4000 search bins provide fast satellite signal acquisition and short startup time. Acquisition sensitivity of -137dBm and tracking sensitivity of -145dBm offers good navigation performance even in urban canyons having limited sky view.

Satellite-based augmentation systems, such as WAAS and EGNOS, are supported to yield improved accuracy.

# **TECHNICAL SPECIFICATIONS**

Receiver Type 12 parallel channel, L1 C/A code

Accuracy Position 5m CEP

Velocity 0.1m/sec 1PPS Timing +/-1us

Startup Time < 10sec hot start

< 35sec warm start < 45sec cold start

Signal Reacquisition 1s

Sensitivity -137dBm acquisition

-145dBm tracking

Update Rate 1Hz

Dynamics 4G (39.2m/sec<sup>2</sup>)

Operational Limits Altitude < 18,000m or velocity < 515m/s

(COCOM limit, either may be exceeded but not both)

Serial Interface LVTTL level

Protocol NMEA-0183 V3.01

GPGGA, GPGLL, GPGSA, GPGSV, GPRMC, GPVTG, GPZDA

4800 baud, 8, N, 1

Datum Default WGS-84

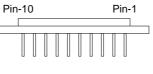
User definable

RF Connector MMCX

Interface Connector 10 pin 2.0mm pitch male header

Input Voltage 3.3V DC +/-100mV or

3.8V ~ 8.0V (5V version)


Current Consumption 67 ~ 90mA

Dimension 43.3mm L x 31.4mm W x 5.8mm H

Weight: 10g

Operating Temperature  $-40^{\circ}\text{C} \sim +85^{\circ}\text{C}$ 

Humidity 5% ~ 95%



LS-40EB Lateral View

# **PINOUT DESCRIPTION**

| Pin Number | Signal Name       | Description                                                       |
|------------|-------------------|-------------------------------------------------------------------|
| 1          | Serial Data Out 1 | Asynchronous serial output at LVTTL level, to output NMEA message |
| 2          | Serial Data In 1  | Asynchronous serial input at LVTTL level, to input commands       |
| 3          | VCC               | Regulated 3.3V power input (3.3V version)                         |
|            |                   | 3.8V ~ 8.0V (5V version)                                          |
| 4          | GND               | Ground                                                            |
| 5          | PIO Output        | PIO output, default used for GPS status indication                |
| 6          | 1PPS              | 1 pulse per second time mark                                      |
| 7          | RESET IN          | Reset input, active LOW                                           |
| 8          |                   | Asynchronous serial input at LVTTL level, to input DGPS RTCM data |
| 9          | VBAT              | Optional 3.3V backup power input to sustain RTC and SRAM data     |
| 10         | Antenna Power     | Power input for active antenna                                    |

# **1PPS Output**

The GPS receiver is in navigation mode upon power-up, with 1PPS output free running. After 3 minutes of valid position fix and remaining under static-mode, the receiver changes to timing-mode, with 1PPS output signal synchronized to the UTC second. The receiver will change to navigation-mode, with 1PPS output free running, if the receiver is in motion. The 1PPS output will become synchronized to the UTC second again after the receiver had remained in static mode for 3 minutes.

# **NMEA Messages**

The serial interface protocol is based on the National Marine Electronics Association's NMEA 0183 ASCII interface specification. This standard is fully define in "NMEA 0183, Version 3.01" The standard may be obtained from NMEA, www.nmea.org

# **GGA - GPS FIX DATA**

Time, position and position-fix related data (number of satellites in use, HDOP, etc.).

#### **Format**

\$GPGGA,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,M,<10>,M,<11>,<12>,\*<13><CR><LF>

#### **Example:**

\$GPGGA,104549.04,2447.2038,N,12100.4990,E,1,06,01.7,00078.8,M,0016.3,M,,\*5C<CR><LF>

| Field | Example    | Description                                                                 |
|-------|------------|-----------------------------------------------------------------------------|
| 1     | 104549.04  | UTC time in hhmmss.ss format, 000000.00 ~ 235959.99                         |
| 2     | 2447.2038  | Latitude in ddmm.mmmm format                                                |
|       |            | Leading zeros transmitted                                                   |
| 3     | N          | Latitude hemisphere indicator, 'N' = North, 'S' = South                     |
| 4     | 12100.4990 | Longitude in dddmm.mmmm format                                              |
|       |            | Leading zeros transmitted                                                   |
| 5     | Е          | Longitude hemisphere indicator, 'E' = East, 'W' = West                      |
| 6     | 1          | Position fix quality indicator                                              |
|       |            | 0: position fix unavailable                                                 |
|       |            | 1: valid position fix, SPS mode                                             |
|       |            | 2: valid position fix, differential GPS mode                                |
| 7     | 06         | Number of satellites in use, 00 ~ 12                                        |
| 8     |            | Horizontal dilution of precision, 00.0 ~ 99.9                               |
| 9     | 00078.8    | Antenna height above/below mean sea level, -9999.9 ~ 17999.9                |
| 10    | 0016.3     | Geoidal height, -999.9 ~ 9999.9                                             |
| 11    |            | Age of DGPS data since last valid RTCM transmission in xxx format (seconds) |
|       |            | NULL when DGPS not used                                                     |
| 12    |            | Differential reference station ID, 0000 ~ 1023                              |
|       |            | NULL when DGPS not used                                                     |
| 13    | 5C         | Checksum                                                                    |

**Note:** The checksum field starts with a '\*' and consists of 2 characters representing a hex number. The checksum is the exclusive OR of all characters between '\$' and '\*'.

# GLL - LATITUDE AND LONGITUDE, WITH TIME OF POSITION FIX AND STATUS

Latitude and longitude of current position, time, and status.

#### Format:

\$GPGLL,<1>,<2>,<3>,<4>,<5>,<6>,<7>\*<8><CR><LF>

#### Example:

\$GPGLL,2447.2073,N,12100.5022,E,104548.04,A,A\*65<CR><LF>

| Field | Example    | Description                                                     |
|-------|------------|-----------------------------------------------------------------|
| 1     | 2447.2073  | Latitude in ddmm.mmmm format                                    |
|       |            | Leading zeros transmitted                                       |
| 2     | Ν          | Latitude hemisphere indicator, 'N' = North, 'S' = South         |
| 3     | 12100.5022 | Longitude in dddmm.mmmm format                                  |
|       |            | Leading zeros transmitted                                       |
| 4     | Ш          | Longitude hemisphere indicator, 'E' = East, 'W' = West          |
| 5     | 104548.04  | UTC time in hhmmss.ss format, 000000.00 ~ 235959.99             |
| 6     | Α          | Status, 'A' = valid position, 'V' = navigation receiver warning |
| 7     | Α          | Mode indicator                                                  |
|       |            | 'N' = Data invalid                                              |
|       |            | 'A' = Autonomous                                                |
|       |            | 'D' = Differential                                              |
|       |            | 'E' = Estimated                                                 |
| 8     | 65         | Checksum                                                        |

# **GSA - GPS DOP AND ACTIVE SATELLITES**

GPS receiver operating mode, satellites used for navigation, and DOP values.

#### Format:

\$GPGSA,<1>,<2>,<3>,<3>,<3>,<3>,<3>,<3>,<3>,<3>,<4>,<5>,<6>\*<7><CR><LF>

# Example:

\$GPGSA,A,3,26,21,,,09,17,,,,,,10.8,02.1,10.6\*07<CR><LF>

| Field | Example            | Description                                                               |
|-------|--------------------|---------------------------------------------------------------------------|
| 1     | Α                  | Mode, 'M' = Manual, 'A' = Automatic                                       |
| 2     | 3                  | Fix type, 1 = not available, 2 = 2D fix, 3 = 3D fix                       |
| 3     | 26,21,,,09,17,,,,, | PRN number, 01 to 32, of satellite used in solution, up to 12 transmitted |
| 4     | 10.8               | Position dilution of precision, 00.0 to 99.9                              |
| 5     | 02.1               | Horizontal dilution of precision, 00.0 to 99.9                            |
| 6     | 10.6               | Vertical dilution of precision, 00.0 to 99.9                              |
| 7     | 07                 | Checksum                                                                  |

#### **GSV - GPS SATELLITE IN VIEW**

Number of satellites in view, PRN number, elevation angle, azimuth angle, and C/No. Only up to four satellite details are transmitted per message. Additional satellite in view information is sent in subsequent GSV messages.

#### Format:

\$GPGSV,<1>,<2>,<3>,<4>,<5>,<6>,<7>,...,<4>,<5>,<6>,<7> \*<8><CR><LF>

#### Example:

\$GPGSV,2,1,08,26,50,016,40,09,50,173,39,21,43,316,38,17,41,144,42\*7C<CR><LF>\$GPGSV,2,2,08,29,38,029,37,10,27,082,32,18,22,309,24,24,09,145,\*7B<CR><LF>

| Field | Example | Description                                                     |
|-------|---------|-----------------------------------------------------------------|
| 1     | 2       | Total number of GSV messages to be transmitted                  |
| 2     | 1       | Number of current GSV message                                   |
| 3     | 08      | Total number of satellites in view, 00 ~ 12                     |
| 4     | 26      | Satellite PRN number, GPS: 01 ~ 32, SBAS: 33 ~ 64 (33 = PRN120) |
| 5     | 50      | Satellite elevation number, 00 ~ 90 degrees                     |
| 6     | 016     | Satellite azimuth angle, 000 ~ 359 degrees                      |
| 7     | 40      | C/No, 00 ~ 99 dB                                                |
|       |         | Null when not tracking                                          |
| 8     | 7C      | Checksum                                                        |

# RMC - RECOMMANDED MINIMUM SPECIFIC GPS/TRANSIT DATA

Time, date, position, course and speed data.

### Format:

\$GPRMC,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,<10>,<11>,<12>\*<13><CR><LF>

# Example:

 $\$\mathsf{GPRMC}, 104549.04, \mathsf{A}, 2447.2038, \mathsf{N}, 12100.4990, \mathsf{E}, 016.0, 221.0, 250304, 003.3, \mathsf{W}, \mathsf{A}^*22 < \mathsf{CR} > < \mathsf{LF} > \mathsf{CR} > \mathsf{CR}$ 

| Field | Example    | Description                                                     |
|-------|------------|-----------------------------------------------------------------|
| 1     | 104549.04  | UTC time in hhmmss.ss format, 000000.00 ~ 235959.99             |
| 2     | Α          | Status, 'V' = navigation receiver warning, 'A' = valid position |
| 3     | 2447.2038  | Latitude in dddmm.mmmm format                                   |
|       |            | Leading zeros transmitted                                       |
| 4     | N          | Latitude hemisphere indicator, 'N' = North, 'S' = South         |
| 5     | 12100.4990 | Longitude in dddmm.mmmm format                                  |
|       |            | Leading zeros transmitted                                       |
| 6     | Ш          | Longitude hemisphere indicator, 'E' = East, 'W' = West          |
| 7     | 016.0      | Speed over ground, 000.0 ~ 999.9 knots                          |
| 8     | 221.0      | Course over ground, 000.0 ~ 359.9 degrees                       |
| 9     | 250304     | UTC date of position fix, ddmmyy format                         |
| 10    | 003.3      | Magnetic variation, 000.0 ~ 180.0 degrees                       |
| 11    | W          | Magnetic variation direction, 'E' = East, 'W' = West            |
| 12    | Α          | Mode indicator                                                  |
|       |            | 'N' = Data invalid                                              |
|       |            | 'A' = Autonomous                                                |
|       |            | 'D' = Differential                                              |
|       |            | 'E' = Estimated                                                 |
| 13    | 22         | Checksum                                                        |

# **VTG - COURSE OVER GROUND AND GROUND SPEED**

Velocity is given as course over ground (COG) and speed over ground (SOG).

#### Format:

GPVTG,<1>,T,<2>,M,<3>,N,<4>,K,<5>\*<6><CR><LF>

# Example:

\$GPVTG,221.0,T,224.3,M,016.0,N,0029.6,K,A\*1F<CR><LF>

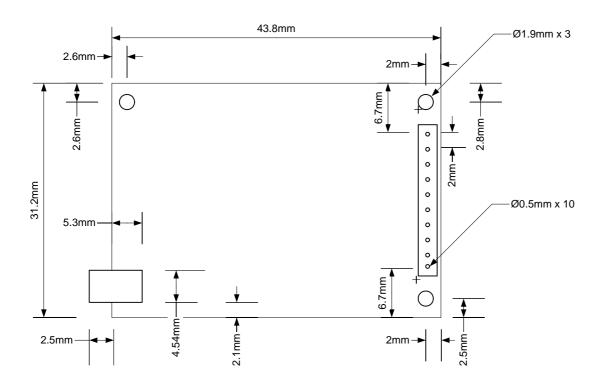
| Field | Example | Description                                            |
|-------|---------|--------------------------------------------------------|
| 1     | 221.0   | True course over ground, 000.0 ~ 359.9 degrees         |
| 2     | 224.3   | Magnetic course over ground, 000.0 ~ 359.9 degrees     |
| 3     | 016.0   | Speed over ground, 000.0 ~ 999.9 knots                 |
| 4     | 0029.6  | Speed over ground, 0000.0 ~ 1800.0 kilometers per hour |
| 5     | А       | Mode indicator 'N' = Data invalid                      |
|       |         | 'A' = Autonomous                                       |
|       |         | 'D' = Differential                                     |
|       |         | 'E' = Estimated                                        |
| 6     | 1F      | Checksum                                               |

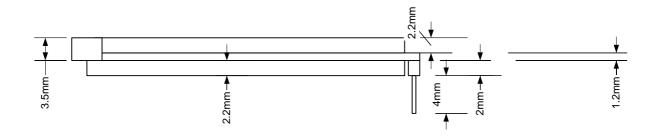
# **ZDA TIME AND DATE**

# Format:

\$GPZDA,<1>,<2>,<3>,<4>,<5>,<6>\*<7><CR><LF>

# Example:


\$GPZDA,104548.04,25,03,2004,,\*6C<CR><LF>


| Field | Example   | Description                                         |
|-------|-----------|-----------------------------------------------------|
| 1     | 104548.04 | UTC time in hhmmss.ss format, 000000.00 ~ 235959.99 |
| 2     | 25        | UTC time: day (01 31)                               |
| 3     | 03        | UTC time: month (01 12)                             |
| 4     | 2004      | UTC time: year (4 digit year)                       |
| 5     |           | Local zone hour                                     |
|       |           | Not being output by the receiver (NULL)             |
| 6     |           | Local zone minutes                                  |
|       |           | Not being output by the receiver (NULL)             |
| 7     | 6C        | Checksum                                            |

# **Binary Messages**

See Binary Message Protocol User's Guide for detailed descriptions.

# **MECHANICAL CHARACTERISTICS**





LocSense Technology Inc. No.2, Minyou 2<sup>nd</sup> Street, Hsinchu, Taiwan, 300

Phone +886 3 6661866, +886 3 6661890

Fax +886 3 5631038 Email info@locsense.com.tw Website www.locsense.com.tw

### © 2004 LocSense Technology Inc. All rights reserved.

Not to be reproduced in whole or part for any purpose without written permission of LocSense Technology Inc ("LocSense") Information provided by LocSense is believed to be accurate and reliable. These materials are provided by LocSense as a service to its customers and may be used for informational purposes only. LocSense assumes no responsibility for errors or omissions in these materials, nor for its use. LocSense reserves the right to change specification at any time without notice

These materials are provides "as is" without warranty of any kind, either expressed or implied, relating to sale and/or use of LocSense products including liability or warranties relating to fitness for a particular purpose, consequential or incidental damages, merchantability, or infringement of any patent, copyright or other intellectual property right. LocSense further does not warrant the accuracy or completeness of the information, text, graphics or other items contained within these materials. LocSense shall not be liable for any special, indirect, incidental, or consequential damages, including without limitation, lost revenues or lost profits, which may result from the use of these materials.

LocSence products are not intended for use in medical, life-support devices, or applications involving potential risk of death, personal injury, or severe property damage in case of failure of the product.